Skip to main content
Log in

Sample design effects in landscape genetics

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10–300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarts G, MacKenzie M, McConnell B, Fedak M, Matthiopoulos J (2008) Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31:140–160

    Article  Google Scholar 

  • Agee JK, Johnson DR (1987) Ecosystem management for parks and wilderness. University of Washington Press, Seattle

    Google Scholar 

  • Anderson CD, Epperson BK, Fortin M-J, Holdregger R, James PM, Rosenberg M, Scriber KT, Spear ST (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Balkenhol N, Landguth EL (2011) Simulation modeling in landscape genetics: on the need to go further. Mol Ecol 20:667–670

    Article  PubMed  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH (2009) Identifying future research needs in landscape genetics: where to from here? Landsc Ecol 24:455–463

    Article  Google Scholar 

  • Barba MD, Waits LP, Genovesi P, Randi E, Chirichella R, Cetto E (2010) Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J Appl Ecol 47:172–181

    Article  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman DJ, Wiegand T, Fernandez N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691

    Article  PubMed  Google Scholar 

  • Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7(2):e30953. doi:10.1371/journal.pone.0030953

    Article  PubMed  CAS  Google Scholar 

  • Cegelski CC, Waits LP, Anderson NJ, Flagstad O, Strobeck C, Kyle CJ (2006) Genetic diversity and population structure of wolverine (Gulo gulo) populations at the southern edge of their current distribution in North America with implications for genetic viability. Conserv Genet 7:197–211

    Article  Google Scholar 

  • Chapin S, Kofinas GP, Folke C (2009) Principles of ecosystem stewardship: resilience-based natural resource management in a changing world. Springer Science and Business Media, New York

    Google Scholar 

  • Coe PK, Johnson BK, Wisdom MJ, Cook JG, Vavra M, Nielson RM (2011) Validation of elk resource selection models with spatially independent data. J Wildl Manage 75:159–170

    Article  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  PubMed  CAS  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple models with causal modeling. Am Natur 168:486–499

    Article  PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759

    Article  PubMed  Google Scholar 

  • Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805

    Article  PubMed  CAS  Google Scholar 

  • Epperson BK, McRae BH, Scribner K, Cushman SA, Rosenberg MS, Fortin M-J, James PA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3549–3564

    Article  PubMed  Google Scholar 

  • ESRI (1999–2008) Environmental System Research Institute, Redlands

  • Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917

    Article  PubMed  CAS  Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden markov random fields in spatial population genetics. Genetics 174:805–816

    Article  PubMed  Google Scholar 

  • Freedman AH, Thomassen HA, Buermann W, Smith TB (2010) Genomic signals of diversification along ecological gradients in a tropical lizard. Mol Ecol 19:3773–3788

    Article  PubMed  Google Scholar 

  • Galindo HM, Pfeiffer-Herbert AS, McManus MA, Chao Y, Chai F, Palumbi SR (2010) Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol Ecol 19:3692–3707

    Article  PubMed  Google Scholar 

  • Gamache I, Jaramillo-Correa JP, Payette S, Bousquet J (2003) Diverging patterns of mitochondrial and nuclear DNA diversity in subartic black spruce: imprint of a founder effect associated with postglacial colonization. Mol Ecol 12:891–901

    Article  PubMed  CAS  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson JF (2008) Spatial genetic structure of a small rodent in a heterogenous landscape. Mol Ecol 17:4619–4629

    Article  PubMed  CAS  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Software 22:1–19

    Google Scholar 

  • Guillot G, Rousset F (2012) On the use of simple and partial Mantel tests in presence of spatial autocorrelation. arXiv:1112.0651v1 [q-bio.PE]

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Hermy M, Roldán-Ruiz I (2006) Sexual reproduction, clonal diversity and genetic differentiation in patchily distributed populations of the temperate forest herb Paris quadrifolia (Trilliacaea). Oecologia 147:434–444

    Article  PubMed  Google Scholar 

  • Jaquie′ry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705

    Article  Google Scholar 

  • Kendall KC, Stetz JB, Roon DA, Waits LP, Boulanger JB, Paetkau D (2008) Grizzly bear density in Glacier National Park, Montana. J Wildl Manage 72:1693–1705

    Article  Google Scholar 

  • Knowles LL, Alvarado-Serrano DF (2010) Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Mol Ecol 19:3727–3745

    Article  PubMed  Google Scholar 

  • Landguth EL, Cushman SA (2010) CDPOP: a spatially explicit cost distance population genetics program. Mol Ecol Res 10:156–161

    Article  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  Google Scholar 

  • Landguth EL, Fedy BC, Oyler-McCance SJ, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin M-J, Cushman SA (2011) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Res. doi:10.1111/j.1755-0998.2011.03077.x

    Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10:831–844

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Martinez JG, Carranza J, Fernandez-Garcia JL, Sanchez-Prieto CB (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildl Manage 66:1273–1282

    Article  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Turner MG, Smithwick AH, Dent CL, Stanley EH (2004) Spatial extrapolation: the science of predicting ecological patterns and processes. Bioscience 4:310–320

    Article  Google Scholar 

  • Mladenoff DJ, Sickley TA, Wydeven AP (1999) Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol Appl 9:37–44

    Article  Google Scholar 

  • Murphy M, Evans J, Cushman S, Storfer A (2008) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697

    Article  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Article  PubMed  Google Scholar 

  • Oyler-McCance SJ, Taylor SE, Quinn TW (2005) A multilocus genetic survey of greater sage-grouse across their range. Mol Ecol 14:1293–1310

    Article  PubMed  CAS  Google Scholar 

  • Pernetta AP, Allen JA, Beebee TJC, Reading CH (2011) Fine-scale population genetic structure and sex-biased dispersal in the smooth snake (Coronella austriaca) in southern England. Heredity 107:231–238

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial mantel tests adequate? Evolution 55:1703–1705

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Schwartz MK, Copeland JP, Anderson NJ, Squires JR, Inman RM, McKelvey KS, Pilgrim KL, Waits LP, Cushman SA (2009) Wolverine gene flow across a narrow climatic niche. Ecology 90:3222–3232

    Article  PubMed  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holdregger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726

    Article  PubMed  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new multi-scale model selection framework. Mol Ecol 19:3603–3619

    Article  PubMed  CAS  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey K, Allendorf F, Luikart G (2010) Why replication is important in landscape genetics: American black bears in the Rocky Mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Sork V, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 17:3489–3495

    Article  Google Scholar 

  • Spear S, Balkenhol N, Fortin M-J, McRae B, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S, Dezzani R, Delmelle E, Vierling L, Waits L (2007) Putting the landscape in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape Genetics: where are we now? Mol Ecol 19:3496–3514

    Google Scholar 

  • Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Mol Ecol 19:3532–3548

    Article  PubMed  Google Scholar 

  • Trombulak S, Baldwin R (2010) Landscape-scale conservation planning. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The use of any trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank C. Funk and three anonymous reviewers for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara J. Oyler-McCance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyler-McCance, S.J., Fedy, B.C. & Landguth, E.L. Sample design effects in landscape genetics. Conserv Genet 14, 275–285 (2013). https://doi.org/10.1007/s10592-012-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0415-1

Keywords

Navigation