Skip to main content

Advertisement

Log in

Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Both increasing and decreasing 20th century growth trends have been reported in forests throughout Europe, but only for few species and areas suitable modelling techniques have been used to distinguish individual tree growth (operating on a local scale) from growth change due to exogenous factors (operating on a broad geographical scale). This study relates for the first time observed growth changes, in terms of basal area increment (BAI) of dominant trees of pedunculate oak, common beech and Scots pine, in north-west European temperate lowland forests (Flanders) to climate, atmospheric CO2 and tropospheric O3 concentrations, N deposition, site quality and forest structure for more than a century (the period 1901–2008), applying mixed models. Growth change during the 20th century is observed for oak (increasing growth) and beech (increasing growth until the 1960s, growth decline afterwards), but not for pine. It was possible to relate growth change of oak and beech to climate time series and N deposition trends. Adding time series for CO2 and O3 concentration did not significantly improve model results. For oak and beech a switch from positive to negative growth response with increasing nitrogen deposition throughout time is observed. Growth increase for oak is mainly determined by the interaction between growing season temperature and soil water recharge. It is reasonable to assume that the observed growth trend for oak will continue for as long as early season water availability is not compromised. The decreasing trend in summer relative air humidity observed since the 1960s in the study area can be a main cause of recent beech BAI decrease. A further growth decline of beech can be expected, independent of site quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Aridity index

AIC:

Akaike information criterion

BAI:

Basal area increment

BAL:

Basal area of the larger trees

BIC:

Bayesian information criterion

DBH:

Diameter at breast height

P:

Precipitation

PET:

Potential EvapoTranspiration

PBL:

Planetary boundary layer

RH:

Relative humidity

(r)RMSE:

(relative) Root Mean Square Error

Tx, Tm, Ta, :

Temperature (max, min, average)

References

  • Aertsen W, Kint V, De Vos B, Deckers J, Van Orshoven J and Muys B (2012) Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees. Plant Soil doi:10.1007/s11104-011-1052-z

  • Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, Von Gilsa H, Huss J, Kenk G, Kolling C, Kohnle U, Meyer P, Mosandl R, Moosmayer HU, Palmer S, Reif A, Rehfuess KE, Stimm B (2005) Future suitability of beech (Fagus sylvatica L.) in central Europe: critical remarks concerning a paper of Rennenberg et al. (2004). Allg Forst Jagdztg 176:60–67

    Google Scholar 

  • Baguis P, Ntegeka V, Willems P, Roulin E (2009) Extension of CCI-HYDR climate change scenarios for temperature and wind speed. K.U.Leuven Hydrolics Section & Royal Meteorological Institute of Belgium, Brussels

    Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    Article  Google Scholar 

  • Becker M, Nieminen TM, Geremia F (1994) Short-term variations and long-term changes in oak productivity in northeastern France—the role of climate and atmospheric CO2. Ann Forest Sci 51:477–492

    Article  Google Scholar 

  • Bergès L, Dupouey JL, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees-Struct Funct 14:398–408

    Article  Google Scholar 

  • Bleeker A, Van Deursen WPA (2007) Modelling the nitrogen deposition to afforested systems. In: Heil GW, Muys B, Hansen K (eds) Environmental effects of afforestation in north-western Europe. Springer, Dordrecht, pp 109–128

    Chapter  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Global Change Biol 12:862–882

    Article  Google Scholar 

  • Bontemps JD, Hervé JC, Dhôte JF (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol Manag 259:1455–1463

    Article  Google Scholar 

  • Braun S, Thomas VFD, Quiring R, Fluckiger W (2010) Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut 158:2043–2052

    Article  Google Scholar 

  • Campioli M, Vincke C, Jonard M, Kint V, Demarée G, Ponette Q (2012) Current status and predicted impact of climate change on forest production and biogeochemistry in the temperate oceanic European zone: review and prospective for Belgium as a case study. J Forest Res 17:1–18

    Article  Google Scholar 

  • Charru M, Seynave I, Morneau F, Bontemps JD (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecol Manag 260:864–874

    Article  Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510

    Article  Google Scholar 

  • de Vries W, Posch M (2011) Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environ Pollut 159:2289–2299

    Article  Google Scholar 

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs GJ, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response? Nature 451:E1–E3

    Article  Google Scholar 

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol Manag 258:1814–1823

    Article  Google Scholar 

  • Delcloo AW, De Backer H (2005) Modelling planetary boundary layer ozone, using meteorological parameters at Uccle and Payerne. Atmos Environ 39:5067–5077

    Article  Google Scholar 

  • Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in southern Germany. Eur J Forest Res 125:249–259

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Forest Ecol Manag 173:63–78

    Article  Google Scholar 

  • Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010) Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13 C. Plant Cell Environ 33:1351–1360

    Google Scholar 

  • Elhani S, Guehl JM, Nys C, Picar JF, Dupouey JL (2005) Impact of fertilization on tree-ring δ15N and δ13C in beech stands: a retrospective analysis. Tree Physiol 25:1437–1446

    Article  Google Scholar 

  • Eriksson H, Karlsson K (1996) Long-term changes in site index in growth and yield experiments with Norway spruce (Picea abies [L.] Karst) and Scots pine (Pinus sylvestris L.) in Sweden. In: Spiecker H, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Heidelberg, pp 79–88

    Chapter  Google Scholar 

  • Fonti P, García-González I (2008) Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J Biogeogr 35:2249–2257

    Article  Google Scholar 

  • Friedrichs DA, Buntgen U, Frank DC, Esper J, Neuwirth B, Loffler J (2009a) Complex climate controls on 20th century oak growth in central-west Germany. Tree Physiol 29:39–51

    Article  Google Scholar 

  • Friedrichs DA, Trouet V, Buntgen U, Frank DC, Esper J, Neuwirth B, Loffler J (2009b) Species-specific climate sensitivity of tree growth in central-west Germany. Trees-Struct Funct 23:729–739

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees-Struct Funct 21:1–11

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1982) Estimating potential evapo-transpiration. J Irrig Drain E 108:225–230

    Google Scholar 

  • Hein S, Dhote JF (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann Forest Sci 63:457–467

    Article  Google Scholar 

  • Hill MO, Roy DB, Mountford JO, Bunce RGH (2000) Extending Ellenberg’s indicator values to a new area: an algorithmic approach. J Appl Ecol 37:3–15

    Article  Google Scholar 

  • Hlasny T, Barcza Z, Fabrika M, Balazs B, Churkina G, Pajtik J, Sedmak R, Turcani M (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236

    Article  Google Scholar 

  • Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283

    Article  Google Scholar 

  • Jacoby GC, Darrigo RD (1997) Tree rings, carbon dioxide, and climatic change. P Natl Acad Sci USA 94:8350–8353

    Article  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biol 12:2163–2174

    Article  Google Scholar 

  • Kelly PM, Munro MAR, Hughes MK, Goodess CM (1989) Climate and signature years in west European oaks. Nature 340:57–60

    Article  Google Scholar 

  • Kint V, Vansteenkiste D, Aertsen W, De Vos B, Bequet R, Van Acker J and Muys B (2012) Forest structure and soil fertility determine internal stem morphology of pedunculate oak—a modelling approach using boosted regression trees. Eur J Forest Res doi:10.1007/s10342-011-0535-z

  • Laubhann D, Sterba H, Reinds GJ, De Vries W (2009) The impact of atmospheric deposition and climate on forest growth in European monitoring plots: An individual tree growth model. Forest Ecol Manag 258:1751–1761

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (Renecofor). Trees-Struct Funct 19:385–401

    Article  Google Scholar 

  • Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. stand in the forest of Berce (“Futaie des Clos”, Sarthe, France). Ann Forest Sci 61:361–372

    Article  Google Scholar 

  • Lebourgeois F, Rathgeber CBK, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21:364–376

    Article  Google Scholar 

  • Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits. Forest Ecol Manag 256:648–655

    Article  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecol Manag 149:33–46

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  Google Scholar 

  • Mäkinen H (1998) The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. Forest Ecol Manag 112:191–197

    Article  Google Scholar 

  • Martin-Benito D, Kint V, del Rio M, Muys B, Canellas I (2011) Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: Past trends and future perspectives. Forest Ecol Manag 262:1030–1040

    Article  Google Scholar 

  • Martinez-Vilalta J, Lopez BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global Change Biol 14:2868–2881

    Article  Google Scholar 

  • Masson G (2005) Autécologie des essences forestières - 2. Essences. Tec & Doc, Paris

    Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Low M, Nunn AJ, Werner H, Wipfler P, Osswaldg W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenrother M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Haberle KH (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—Resume from the free-air fumigation study at Kranzberg forest. Environ Pollut 158:2527–2532

    Article  Google Scholar 

  • Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008) Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in central Europe and Finland. Eur J Forest Res 127:507–524

    Article  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563

    Article  Google Scholar 

  • Misson L, Rasse DP, Vincke C, Aubinet M, Francois L (2002) Predicting transpiration from forest stands in Belgium for the 21st century. Agr Forest Meteorol 111:265–282

    Article  Google Scholar 

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704

    Article  Google Scholar 

  • Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees-Struct Funct 24:887–898

    Article  Google Scholar 

  • Penninckx V, Meerts P, Herbauts J, Gruber W (1999) Ring width and element concentrations in beech (Fagus sylvatica L.) from a periurban forest in central Belgium. Forest Ecol Manag 113:23–33

    Article  Google Scholar 

  • Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecol Biogeogr 20:597–608

    Article  Google Scholar 

  • Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297–304

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pinheiro JC, Bates DM, DebRoy S, Sarkar D, Development Core Team R (2009) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3:1–96

    Google Scholar 

  • Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus Sylvatica L.) forests of the central Apennines, Italy. Global Change Biol 14:1265–1281

    Article  Google Scholar 

  • Pretzsch H (1996) Growth trends of forests in Southern Germany. In: Spiecker H, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Heidelberg, pp 107–131

    Chapter  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597

    Article  Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, northern Spain. Ann Forest Sci 58:237–251

    Article  Google Scholar 

  • Sarris D, Christodoulakis D, Korner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biol 13:1187–1200

    Article  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schroder C, Wilmking M (2011) Drought matters—Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol Manag 262:947–961

    Article  Google Scholar 

  • Schmitt U, Moller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J Appl Bot-Angew Bot 74:10–16

    Google Scholar 

  • Simpson D, Ashmore MR, Emberson L, Tuovinen JP (2007) A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study Environ Pollut 146:715–725

    Google Scholar 

  • Singer JD, Willett JB (2003) Aplied longitudinal data analysis—Modeling change and event occurrence. Oxford University Press, Oxford

    Google Scholar 

  • Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009) Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecol Manag 258:1735–1750

    Article  Google Scholar 

  • Spiecker H, Köhl M, Skovsgaard JP (1996) Growth trends in European forests. Springer, Heidelberg

    Book  Google Scholar 

  • van Aardenne JA, Dentener FJ, Olivier JGJ, Goldewijk C, Lelieveld J (2001) A 1 degrees x 1 degrees resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochem Cy 15:909–928

    Article  Google Scholar 

  • Voelker SL, Muzika RM, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr 76:549–564

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792

    Article  Google Scholar 

  • Wykoff WR (1990) A basal area increment model for individual conifers in the northern Rocky-Mountains. Forest Sci 36:1077–1104

    Google Scholar 

  • Zuur AF, Elena NI, Walker NJ, Saveliev AA and Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer

Download references

Acknowledgements

This study has been conducted as part of the SimForTree project (www.SimForTree.be; IWT-SBO contract 060032) and was further supported by the Research Fund K.U.Leuven (OT/07/046). Meteorological and other environmental data were kindly made available by KMI, KNMI, CDIAC and JRC/PBL. The authors wish to thank Joost Malliet, Marc De Vrieze, Sofie Bruneel and Kristof Haneca for their technical support, and Reinhart Ceulemans as well as two anonymous reviewers for their constructive review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Kint.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kint, V., Aertsen, W., Campioli, M. et al. Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Climatic Change 115, 343–363 (2012). https://doi.org/10.1007/s10584-012-0465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0465-x

Keywords

Navigation