Skip to main content

Advertisement

Log in

Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The impacts of climate variability and trends on European forests are unevenly distributed across different bioclimatic zones and species. Extreme climate events are also becoming more frequent and it is unknown how they will affect feedbacks of CO2 between forest ecosystems and the atmosphere. An improved understanding of species differences at the regional scale of the response of forest productivity to climate variation and extremes is thus important for forecasting forest dynamics. In this study, we evaluate the climate sensitivity of aboveground net primary production (NPP) simulated by two dynamic global vegetation models (DGVM; ORCHIDEE and LPJ-wsl) against tree ring width (TRW) observations from about 1000 sites distributed across Europe. In both the model simulations and the TRW observations, forests in northern Europe and the Alps respond positively to warmer spring and summer temperature, and their overall temperature sensitivity is larger than that of the soil-moisture-limited forests in central Europe and Mediterranean regions. Compared with TRW observations, simulated NPP from ORCHIDEE and LPJ-wsl appear to be overly-sensitive to climatic factors. Our results indicate that the models lack biological processes that control time lags, such as carbohydrate storage and remobilization, that delay the effects of radial growth dynamics to climate. Our study highlights the need for re-evaluating the physiological controls on the climate sensitivity of NPP simulated by DGVMs. In particular, DGVMs could be further enhanced by a more detailed representation of carbon reserves and allocation that control year-to-year variation in plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S. 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–32.

    Article  CAS  PubMed  Google Scholar 

  • Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DP, Trouet V. 2014a. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176:307–22.

    Article  PubMed  Google Scholar 

  • Babst F, Bouriaud O, Alexander R, Trouet V, Frank D. 2014b. Toward consistent measurements of carbon accumulation: a multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia 32:153–61.

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D. 2013. Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–17.

    Article  Google Scholar 

  • Ball JT, Woodrow I, Berry J. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, Ed. Progress in photosynthesis research. Netherlands: Springer. pp 221–4.

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. 2010. Terrestrial gross carbon dioxide uptake: global distribution and Covariation with climate. Science 329:834–8.

    Article  CAS  PubMed  Google Scholar 

  • Bellassen V, Le Maire G, Dhôte JF, Ciais P, Viovy N. 2010. Modelling forest management within a global vegetation model—part 1: model structure and general behaviour. Ecol Model 221:2458–74.

    Article  CAS  Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas M-J, Ciais P. 2011. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17:3274–92.

    Article  Google Scholar 

  • Berninger F, Hari P, Nikinmaa E, Lindholm M, Meriläinen J. 2004. Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line. Tree Physiol 24:193–204.

    Article  PubMed  Google Scholar 

  • Breitenmoser P, Brönnimann S, Frank D. 2014. Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim Past 10:437–49.

    Article  Google Scholar 

  • Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans MEK. 2016. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 19:1119–28.

    Article  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–36.

    Article  Google Scholar 

  • D’Orangeville L, Duchesne L, Houle D, Kneeshaw D, Côté B, Pederson N. 2016. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352:1452–5.

    Article  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fatichi S, Leuzinger S, Körner C. 2014. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–95.

    Article  CAS  PubMed  Google Scholar 

  • Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlstrom A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D`Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M. 2015. Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Clim. Change 5: 579–83.

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R. 2013. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–26.

    Article  Google Scholar 

  • Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK. 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 34:796–818.

    Article  CAS  PubMed  Google Scholar 

  • Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J. 2016. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences.

  • Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F. 2014. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Chang Biol 20:851–66.

    Article  PubMed  Google Scholar 

  • Girardin MP, Raulier F, Bernier PY, Tardif JC. 2008. Response of tree growth to a changing climate in boreal central Canada: a comparison of empirical, process-based, and hybrid modelling approaches. Ecol Model 213:209–28.

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–42.

    Article  Google Scholar 

  • Haxeltine A, Prentice IC. 1996. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob Biogeochem Cycles 10:693–709.

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.

    Article  Google Scholar 

  • Hoch G, Körner C. 2009. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66.

    Article  Google Scholar 

  • IPCC. 2013. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. p 1535.

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–78.

    Article  Google Scholar 

  • Keeling CD, Whorf TP. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. pp 16–26.

  • Keenan TF, Davidson E, Moffat AM, Munger W, Richardson AD. 2012. Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Chang Biol 18:2555–69.

    Article  Google Scholar 

  • Keyan F, David F, Yan Z, Feifei Z, Heikki S. 2015. Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings. Environ Res Lett 10:034010.

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19: n/a–n/a.

  • Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Klein Goldewijk K, Koven C, Landa CS, Landschützer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Séférian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N. 2015. Global carbon budget 2014. Earth Syst Sci Data 7:47–85.

    Article  Google Scholar 

  • Li G, Harrison SP, Prentice IC, Falster D. 2014. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth. Biogeosciences 11:6711–24.

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709.

    Article  Google Scholar 

  • McCree KJ. 1974. Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. Crop Sci 14:509–14.

    Article  Google Scholar 

  • Misson L. 2004. MAIDEN: a model for analyzing ecosystem processes in dendroecology. Can J For Res 34:874–87.

    Article  Google Scholar 

  • Mitchell TD, Jones PD. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712.

    Article  Google Scholar 

  • Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M, Frank D. 2014. The influence of sampling design on tree-ring-based quantification of forest growth. Glob Chang Biol 20:2867–85.

    Article  PubMed  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. 2007. Mortality of large trees and lianas following experimental drought in an amazon forest. Ecology 88:2259–69.

    Article  PubMed  Google Scholar 

  • Nippert JB, Duursma RA, Marshall JD. 2004. Seasonal variation in photosynthetic capacity of montane conifers. Funct Ecol 18:876–86.

    Article  Google Scholar 

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N, Huntingford C, Jung M, Levis S, Levy PE, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni RB, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Chang Biol 19:2117–32.

    Article  PubMed  Google Scholar 

  • Poulter B, Frank DC, Hodson EL, Zimmermann NE. 2011. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8:2027–36.

    Article  CAS  Google Scholar 

  • Poulter B, Hattermann F, Hawkins ED, Zaehle S, Sitch S, Restrepo-Coupe N, Heyder U, Cramer W. 2010. Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Glob Chang Biol 16:2476–95.

    Article  Google Scholar 

  • Rammig A, Wiedermann M, Donges JF, Babst F, von Bloh W, Frank D, Thonicke K, Mahecha MD. 2015. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12:373–85.

    Article  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Chang Biol 18:566–84.

    Article  Google Scholar 

  • Ruimy A, Dedieu G, Saugier B. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob Biogeochem Cycles 10:269–85.

    Article  CAS  Google Scholar 

  • Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlström A, Doney SC, Graven H, Heinze C, Huntingford C, Levis S, Levy PE, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Canadell JG, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao SL, Le Quéré C, Smith B, Zhu Z, Myneni R. 2015. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12:653–79.

    Article  CAS  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–85.

    Article  Google Scholar 

  • Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ. 2010. An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–39.

    Article  Google Scholar 

  • Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A. 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann For Sci 66:402.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–13.

    Article  Google Scholar 

  • Zhang Z, Zimmermann NE, Kaplan JO, Poulter B. 2016. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13:1387–408.

    Article  Google Scholar 

  • Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–3.

    Article  CAS  PubMed  Google Scholar 

  • Zobler L. 1986. A world soil file for global climate modeling: National Aeronautics and Space Administration. New York: Goddard Space Flight Center, Institute for Space Studies.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was funded by the European Commission FP7 Project CARBO-Extreme (FP7-ENV-2008-1-226701). ZZ acknowledges funding by the CCES MAIOLICA project #42-01 and the National Natural Science Foundation of China (Y411391001). FB acknowledges funding from the EU Horizon-2020 project “BACI” (Grant 640176) and the Swiss National Science Foundation (Grant P300P2_154543). We thank all tree-ring data collectors for sharing their data on the International Tree-Ring Data Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Additional information

Author contributions

ZZ, BP, and FB designed the study, analyzed the data and wrote the paper FB and DF provided the tree ring data, and wrote the manuscript. TL, VB, BP, KT, PC designed the study and contributed two models. All co-authors substantially contributed to data evaluation and the writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Babst, F., Bellassen, V. et al. Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models. Ecosystems 21, 410–425 (2018). https://doi.org/10.1007/s10021-017-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0157-5

Keywords:

Navigation