Skip to main content

Advertisement

Log in

Species-specific climate sensitivity of tree growth in Central-West Germany

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Growth responses to twentieth century climate variability of the three main European tree species Fagus sylvatica, Quercus petraea, and Pinus sylvestris within two temperate low mountain forest sites were analyzed, with particular emphasis on their dependence upon ecological factors and temporal stability in the obtained relationships. While site conditions in Central (~51°N, 9°E, KEL) and West (50.5°N, 6.5°E, EIF) Germany are similar, annual precipitation totals of ≅700 mm and ≅1,000 mm describe a maritime-continental gradient. Ring-width samples from 228 trees were collected and PCA used to identify common growth patterns. Chronologies were developed and redundancy analysis and simple correlation coefficients calculated to detect twentieth century temperature, precipitation, and drought fingerprints in the tree-ring data. Summer drought is the dominant driver of forest productivity, but regional and species-specific differences indicate more complex influences upon tree growth. F. sylvatica reveals the highest climate sensitivity, whereas Q. petraea is most drought tolerant. Drier growth conditions in KEL result in climate sensitivity of all species, and Q. petraea shifted from non-significant to significant drought sensitivity during recent decades at EIF. Drought sensitivity dynamics of all species vary over time. An increase of drought sensitivity in tree growth was found in the wetter forest area EIF, whereas a decrease occurred in the middle of the last century for all species in the drier KEL region. Species-specific and regional differences in long-term climate sensitivities, as evidenced by temporal variability in drought sensitivity, are potential indicators for a changing climate that effects Central-West German forest growth, but meanwhile hampers a general assessment of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammer Ch et al (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa. Allg Forst- u J-Ztg 176:60–67

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041. doi:10.1038/nature06045

    Article  PubMed  CAS  Google Scholar 

  • Bonn S (1998) Dendroökologische Untersuchung der Konkurrenzdynamik in Buchen/Eichen-Mischbeständen und zu erwartende Modifikationen durch Klimaänderungen. PhD Thesis, Forstwissenschaftliche Beiträge Tharandt, Dresden

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaption processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–941

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD Thesis, University of Arizona, Tuscon

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Glitzenstein JS, Krusic PJ, Harcombe PA (2001) Identifying functional groups of trees in west Gulf Coast forests (USA): a tree-ring approach. Ecol Appl 11:883–903

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Di Filippo A, Biondi F, Cufar K, de Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. For Ecol Manage 173:63–78

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart

  • Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees. Q. petraea (Matt) Liebl. and Q. robur L. in a natural stand. New Phytol 125:381–389

    Article  Google Scholar 

  • Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34. doi:10.1029/2007GL030844

  • Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310

    Article  Google Scholar 

  • Frank D, Esper J, Cook ER (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi:10.1029/2007GL030571

  • Friedrichs DA, Neuwirth B, Winiger W, Löffler J (2008a). Methodologically induced differences in oak site classifications in a homogeneous tree-ring network. Dendrochronologia. doi:10.1016/j.dendro.2008.02.001

  • Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2008b) Complex climate controls of 20th century oak growth in Central-West Germany. Tree Physiol. doi:10.1093/treephys/tpn003

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Article  Google Scholar 

  • Granier A et al (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricul Forest Meteorol 143:123–145

  • Härdtle W, Ewald J, Hölzel N (2004) Wälder des Tieflandes und der Mittelgebirge. Ulmer, Stuttgart

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr 134:1–35

    Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32. doi:10.1029/2005GL023252

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

    Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New York

    Google Scholar 

  • Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Glob Change Biol 13:2498–2508

    Article  Google Scholar 

  • Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Response of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650

    PubMed  Google Scholar 

  • Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz). Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen 287:3–81

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27

    Google Scholar 

  • Rennenberger H, Seiler W, Mayssek R, Gessler A, Kreuzwieser J (2004) European beech (Fagus sylvatica L.)—a forest tree without future in the south of Central Europe? Allg Forst- u J-Ztg 175:210–224

    Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in lowland forest in Cantabria, Spain. Ann For Sci 58:237–251

    Article  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400

    Article  CAS  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  CAS  Google Scholar 

  • Schweingruber FH (1993) Jahrringe und Umwelt–Dendroökologie. Haupt, Bern

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment—dendrochronology. Haupt, Bern

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago, Chicago, Reprinted 1996. University of Arizona Press, Tucson

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307

    Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Article  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their comments. DAF was supported by the German Federal Environmental Foundation (DBU). UB and JE were supported by the EU-project MILLENNIUM (#017008) and DCF by the EU-project CARBO-Extreme (#226701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar A. Friedrichs.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrichs, D.A., Trouet, V., Büntgen, U. et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23, 729–739 (2009). https://doi.org/10.1007/s00468-009-0315-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0315-2

Keywords

Navigation