Skip to main content
Log in

Structural and functional liaisons between transposable elements and satellite DNAs

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CR:

centromeric retrotransposon

LTR:

long terminal repeat

MITE:

miniature inverted-repeat transposable element

satDNA:

satellite DNA

SINE:

short interspersed element

TE:

transposable element

THAP:

Thanatos-associated protein

TIR:

terminal inverted repeat

TSD:

target site duplication

UTR:

untranslated regions

References

  • Abdurashitov MA, Gonchar DA, Chernukhin VA et al (2013) Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome. BMC Genomics 14:771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agudo M, Losada A, Abad JP et al (1999) Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res 27:3318–3324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012:947089

    Article  PubMed Central  PubMed  Google Scholar 

  • Batistoni R, Pesole G, Marracci S, Nardi I (1995) A tandemly repeated DNA family originated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela). J Mol Evol 40:608–615

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Barucca M, Capriglione T, Odierna G, Olmo E, Canapa A (2008) Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus. Chromosome Res 16:907–916

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosome Res (this issue)

  • Brajković J, Feliciello I, Bruvo-Mađarić B, Ugarković Đ (2012) Satellite DNA-like elements associated with genes within Euchromatin of the Beetle Tribolium castaneum. G3 (Bethesda) 2:931–941

    Article  Google Scholar 

  • Britten R (2006) Transposable elements have contributed to thousands of human proteins. Proc Natl Acad Sci U S A 103:1798–1803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carareto CMA, Hernandez EH, Vieira C (2014) Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene 537:93–99

    Article  CAS  PubMed  Google Scholar 

  • Casola C, Hucks D, Feschotte C (2008) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E (2000) Tnr8, a foldback transposable element from rice. Genes Genet Syst 75:327–333

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T et al (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chueh AC, Wong LH, Wong N, Choo KHA (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93

    Article  CAS  PubMed  Google Scholar 

  • Chueh AC, Northrop EL, Brettingham-Moore KH et al (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5, e1000354

    Article  PubMed Central  PubMed  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A Helitron-like transposon superfamily from Lepidoptera disrupts (GAAA)n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. J Mol Evol 70:275–288

    Article  CAS  PubMed  Google Scholar 

  • Coates BS, Kroemer JA, Sumerford DV, Hellmich RL (2011) A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)n microsatellites. Insect Mol Biol 20:15–27

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Segal D (2009) Extrachromosomal circular DNA in eukaryotes: Possible involvement in the plasticity of tandem repeats. Cytogenet Genome Res 124:327–338

    Article  CAS  PubMed  Google Scholar 

  • Cohen JB, Liebermann D, Kedes L (1985) Tsp transposons: a heterogeneous family of mobile sequences in the genome of the sea urchin Strongylocentrotus purpuratus. Mol Cell Biol 5:2814–2825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordaux R, Batzer MA (2010) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  Google Scholar 

  • Delprat A, Negre B, Puig M, Ruiz A (2009) The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS ONE 4, e7883

    Article  PubMed Central  PubMed  Google Scholar 

  • Dias GB, Svartman M, Delprat A et al (2014) Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol 6:1302–1313

    Article  PubMed Central  PubMed  Google Scholar 

  • DiBartolomeis SM, Tartof KD, Jackson FR (1992) A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res 20:1113–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dover GA (1986) Molecular drive in multigene families: How biological novelties arise, spread and are assimilated. Trends Genet 2:159–165

    Article  CAS  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C (2008) The contribution of transposable elements to the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham E (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Fonseca NA, Vieira CP, Schlötterer C, Vieira J (2012) The DAIBAM MITE element is involved in the origin of one fixed and two polymorphic Drosophila virilis phylad inversions. Fly 6:71–74

    Article  CAS  PubMed  Google Scholar 

  • Gaffney PM, Pierce JC, Mackinley AG et al (2003) Pearl, a novel family of putative transposable elements in bivalve mollusks. J Mol Evol 56:308–316

    Article  CAS  PubMed  Google Scholar 

  • Gent JI, Dawe RK (2012) RNA as a structural and regulatory component of the centromere. Annu Rev Genet 46:443–453

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Wu Y, Koblizkova A et al (2012) Repeatless and repeat-based centromeres in potato: Implications for centromere evolution. Plant Cell 24:3559–3574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heikkinen E, Launonen V, Müller E, Bachmann L (1995) The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements. J Mol Evol 41:604–614

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JSP, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JSP, Schwarzacher T (2013) Nucleosomes and centromeric DNA packaging. Proc Natl Acad Sci U S A 110:19974–19975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hikosaka A, Kawahara A (2004) Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats. J Mol Evol 59:738–746

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K et al (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    Article  CAS  PubMed  Google Scholar 

  • Izsvák Z, Ivics Z, Shimoda N et al (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48:13–21

    Article  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe KA (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (1999) Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Kubat Z, Macas J et al (2006) Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Genet Genomics 276:254–263

    Article  CAS  PubMed  Google Scholar 

  • King DG (2012) Evolution of simple sequence repeats as mutable sites. In: Hannan AJ (ed) Tandem repeat polymorphism: genetic plasticity, neural diversity and disease. Springer, New York, pp 10–25

    Chapter  Google Scholar 

  • King LM, Cummings MP (1997) Satellite DNA repeat sequence variation is low in three species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae). Mol Biol Evol 14:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Kourtidis A, Drosopoulou E, Pantzartzi CN et al (2006a) Three new satellite sequences and a mobile element found inside HSP70 introns of the Mediterranean mussel (Mytilus galloprovincialis). Genome 49:1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Kourtidis A, Drosopoulou E, Nikolaidis N et al (2006b) Identification of several cytoplasmic HSP70 genes from the Mediterranean mussel (Mytilus galloprovincialis) and their long-term evolution in Mollusca and Metazoa. J Mol Evol 62:446–459

    Article  CAS  PubMed  Google Scholar 

  • Kuhn GCS, Heslop-Harrison JS (2011) Characterization and genomic organization of PERI, a repetitive DNA in the Drosophila buzzatii cluster related to DINE-1 transposable elements and highly abundant in the sex chromosomes. Cytogenet Genome Res 132:79–88

    Article  CAS  PubMed  Google Scholar 

  • Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS (2012) The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol 29:7–11

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Langdon T, Seago C, Neu Jones R et al (2000) De Novo evolution of satellite DNA on the rye B chromosome. Genetics 154:869–884

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Leung FC (2006) A CR1 element is embedded in a novel tandem repeat (HinfI repeat) within the chicken genome. Genome 49:97–103

    CAS  PubMed  Google Scholar 

  • Li B, Choulet F, Heng Y et al (2013) Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J 73:952–965

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

  • Liu Z, Yue W, Li D et al (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    Article  CAS  PubMed  Google Scholar 

  • López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn 7. Karger Publishers, Basel, pp 1–28

    Chapter  Google Scholar 

  • López-Flores I, de la Herrán R, Garrido-Ramos MA et al (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188

    Article  PubMed  Google Scholar 

  • Luchetti A (2015) terMITEs: miniature inverted-repeat transposable elements (MITEs) in the termite genome (Blattodea: Termitoidae). Mol Genet Genomics 290:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Koblížková A, Navrátilová A, Neumann P (2009) Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448:198–206

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Izquierdo JA, García-Martínez J, Vicient CM (1997) What makes Grande1 retrotransposon different? Genetica 100:15–28

    Article  PubMed  Google Scholar 

  • Marzo M, Puig M, Ruiz A (2008) The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci U S A 105:2957–2962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marzo M, Liu D, Ruiz A, Chalmers R (2013) Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats. Gene 525:84–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meštrović N, Castagnone-Sereno P, Plohl M (2006) Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol Biol Evol 23:2316–2325

  • Meštrović N, Plohl M, Castagnone-Sereno P (2009) Relevance of satellite DNA genomic distribution in phylogenetic analysis: a case study with root-knot nematodes of the genus Meloidogyne. Mol Phylogenet Evol 50:204–208

    Article  PubMed  Google Scholar 

  • Meštrović N, Pavlek M, Car A et al (2013) Conserved DNA Motifs, Including the CENP-B box-like, are possible promoters of satellite DNA array rearrangements in nematodes. PLoS One 8, e67328

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller WJ, Nagel A, Bachmann J, Bachmann L (2000) Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol Biol Evol 17:1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Mravinac B, Plohl M (2010) Parallelism in evolution of highly repetitive DNAs in sibling species. Mol Biol Evol 27:1857–1867

  • Mravinac B, Plohl M, Meštrović N, Ugarković Đ (2002) Sequence of PRAT satellite DNA “frozen” in some coleopteran species. J Mol Evol 54:774–783

    Article  CAS  PubMed  Google Scholar 

  • Navrátilová A, Koblízková A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumann P, Navrátilová A, Koblížková A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noma K, Ohtsubo E (2000) Tnat1 and Tnat2 from Arabidopsis thaliana: novel transposable elements with tandem repeat sequences. DNA Res 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pasero P, Sjakste N, Blettry C et al (1993) Long-range organization and sequence-directed curvature of Xenopus laevis satellite 1 DNA. Nucleic Acids Res 21:4703–4710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piacentini L, Fanti L, Specchia V et al (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123:345–354

    Article  PubMed Central  PubMed  Google Scholar 

  • Plohl M, Cornudella L (1996) Characterization of a complex satellite DNA in the mollusc Donax trunculus: analysis of sequence variations and divergence. Gene 169:157–164

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Petrović V, Luchetti A et al (2010) Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity (Edinb) 104:543–551

    Article  CAS  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn 7. Karger Publishers, Basel, pp 126–152

    Chapter  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pointer MA, Kamilar JM, Warmuth V et al (2012) RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evol Biol 12:103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. Elife 10:1–18

    Google Scholar 

  • Šatović E, Plohl M (2013) Tandem repeat-containing MITEs in the clam Donax trunculus. Genome Biol Evol 5:2549–2559

    Article  PubMed Central  PubMed  Google Scholar 

  • Scalvenzi T, Pollet N (2014) Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. Mol Phylogenet Evol 81:1–9

    Article  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK et al (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Dunn JM, Bird CP et al (2005) Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci U S A 102:10563–10568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang WH, Hori T, Toyoda A et al (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–1228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Stephan W (1989) Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol 6:198–212

    CAS  PubMed  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:1–5

    Article  Google Scholar 

  • Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas J, Vadnagara K, Pritham EJ (2014) DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mob DNA 5:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Tollis M, Boissinot S (2012) The evolutionary dynamics of transposable elements in eukaryote genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn 7. Karger Publishers, Basel, pp 68–91

    Chapter  Google Scholar 

  • Tsukahara S, Kawabe A, Kobayashi A et al (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Zhang L, Meyer E, Matz MV (2010) Characterization of a group of MITEs with unusual features from two coral genomes. PLoS One 5, e10700

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL et al (2009) Maize centromere structure and evolution: Sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:13–16

    Article  Google Scholar 

  • Wong LH, Choo KHA (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    Article  CAS  PubMed  Google Scholar 

  • Yang HP, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9:R39

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C et al (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Plohl.

Additional information

Responsible Editor: Maria Assunta Biscotti, Pat Heslop-Harrison and Ettore Olmo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meštrović, N., Mravinac, B., Pavlek, M. et al. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 23, 583–596 (2015). https://doi.org/10.1007/s10577-015-9483-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9483-7

Keywords

Navigation