Skip to main content
Log in

A Helitron-Like Transposon Superfamily from Lepidoptera Disrupts (GAAA)n Microsatellites and is Responsible for Flanking Sequence Similarity within a Microsatellite Family

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are mobile DNA regions that alter host genome structure and gene expression. A novel 588 bp non-autonomous high copy number TE in the Ostrinia nubilalis genome has features in common with miniature inverted-repeat transposable elements (MITEs): high A + T content (62.3%), lack of internal protein coding sequence, and secondary structure consisting of subterminal inverted repeats (SIRs). The O. nubilalis TE has inserted at (GAAA)n microsatellite loci, and was named the microsatellite-associated interspersed nuclear element (MINE-1). Non-autonomous MINE-1 superfamily members also were identified downstream of (GAAA)n microsatellites within Bombyx mori and Pectinophora gossypiella genomes. Of 316 (GAAA)n microsatellites from the B. mori whole genome sequence, 201 (63.6%) have associated autonomous or non-autonomous MINE-1 elements. Autonomous B. mori MINE-1s a encode a helicase and endonuclease domain RepHel-like protein (BMHELp1) indicating their classification as Helitron-like transposons and were renamed Helitron1_BM. Transposition of MINE-1 members in Lepidoptera has resulted in the disruption of (GAAA)n microsatellite loci, has impacted the application of microsatellite-based genetic markers, and suggests genome sequence that flanks TT/AA dinucleotides may be required for target site recognition by RepHel endonuclease domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T (2001) Micron, a microsatellite-targeting transposable element in the rice genome. Mol Genet Genomics 266:471–480

    Article  CAS  PubMed  Google Scholar 

  • Anderson SJ, Gould P, Freeland JR (2007) Repetitive flanking sequences (ReFS): novel molecular markers from microsatellite families. Mol Ecol Notes 7:374–376

    Article  CAS  Google Scholar 

  • Anthony N, Gelembiuk G, Raterman D, Nice C, Ffrench-Constant R (2001) Brief report: isolation and characterization of microsatellite markers from the endangered Karner blue butterfly Lycaeides melissa samuelis (Lepidoptera). Hereditas 134:271–273

    Article  CAS  PubMed  Google Scholar 

  • Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA (1995) Alu repeats: a source for the genesis of primate microsatellites. Genomics 29:136–144

    Article  CAS  PubMed  Google Scholar 

  • Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8:382–392

    Article  CAS  PubMed  Google Scholar 

  • Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedrich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bork P, Koonin EV (1993) An expanding family of helicase within the ‘DEAD/H’ superfamily. Nucleic Acids Res 11:751–752

    Article  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau TE, Wessler SR (1994a) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91:1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau TE, Wessler SR (1994b) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casacuberta E, Casacuberta JM, Puigdomenech P, Monfort A (1998) Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J 16:79–85

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li X (2007) Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Coates BS, Sumerford DS, Hellmich RL, Lewis LC (2009) Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library was indicated by (BAC) end sequencing and development of sequence tag site (STS) markers: Implications for lepidopteran genomic research. Genome (in press)

  • Craig NL (1995) Unity in transposition reactions. Science 270:253–254

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne M, Hua-Van A, El Wahab HA, Ben M’Barek S, Vasnier C, Teysset L, Kema GHJ, Daboussi MJ (2006) Transposition of a fungal MITE through the action of a Tc1-like transposase. Genetics 175:441–452

    Article  PubMed  Google Scholar 

  • Economou EP, Bergen AW, Warren AC, Antonarakis SE (1990) The poly(A) tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci USA 87:2951–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauvelot C, Cleary DFR, Menen SBJ (2006) Short-term impact of 1997/1998 ENSO-induced disturbance on abundance and genetic variation in a tropical butterfly. J Heredity 97:367–380

    Article  CAS  Google Scholar 

  • Feschotte CM, Mouchès C (2000) Evidence that a family of miniature inverted repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transpsoson. Mol Biol Evol 17:730–737

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzaglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Gallavotti A, Stryker GA, Lai SK (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol Biol 57:115–127

    Article  CAS  PubMed  Google Scholar 

  • Hutchison C III, Hardies S, Loeb D, Shehee W, Edgell M (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 593–617

    Google Scholar 

  • Jelinek WR, Toomey TP, Leinwand L, Duncan CH, Biro PA, Choudary PV, Weissman SM, Rubin CM, Houck CM, Denlinger PL, Schmid CW (1980) Ubiquitous, interspersed repeated sequences in mammalian genomes. Proc Natl Acad Sci USA 77:1398–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka J, Pethiyagoda C (1995) Sequences from primates: compilation and analysis. J Mol Evol 40:120–126

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov VV, Jurka J (2007a) Helitrons in fruit flies. Rephase reports 7:132–271

    Google Scholar 

  • Kapitonov VV, Jurka J (2007b) Helitrons on a roll: eukaryotic rolling-circle transposons. Trend Genet 23:521–529

    Article  CAS  Google Scholar 

  • Kofler R, Schlotterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    Article  CAS  PubMed  Google Scholar 

  • Kudo Y, Okazaki S, Anzai T, Fujiwara H (2001) Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol 18:848–857

    Article  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner H (2005) Gene movement by Helitron transposons contributes to the haplotype variability in maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal SK, Hannah L (2005) Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds. Proc Natl Acad Sci USA 102:9993–9994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerat E, Sémon M (2007) Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 396:303–311

    Article  CAS  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Livak KL, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Locke J, Howard LT, Aippersbach N, Podemski L, Hodgetts RB (1999) The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster. Chromosoma 108:356–366

    Article  CAS  PubMed  Google Scholar 

  • López-Giráldez F, Andres O, Domingo-Roura X, Bosch M (2006) Análisis of carnivore microsatellites and their intimate association with tRNA-derived SINEs. BMC Genomics 7:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Malausa T, Dalecky A, Ponsard S, Audiot P, Streiff R, Chaval Y, Bourguet D (2007) Genetic structure and gene flow in French populations of two Ostrinia taxa: host races or sibling species? Mol Ecol 16:4210–4222

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: Specific functional annotation with the conserved domain database. Nucleic Acids Res 37:D205–D210

    Article  CAS  PubMed  Google Scholar 

  • Meglécz E, Pétenian F, Danchin E, D’Acier AC, Rasplus JY, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700

    Article  PubMed  Google Scholar 

  • Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185

    Article  PubMed  Google Scholar 

  • Miao XX, Xub SJ, Ming JL, Li MW, Huang JH, Dai FY, Marino SW, Mills DR, Zeng P, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu AY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP (2005) Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc Natl Acad Sci USA 45:16303–16308

    Article  Google Scholar 

  • Miller WJ, Nagel A, Bachmann J, Bachmann L (2000) Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol Biol Evol 17:1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimuar M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–36

    Article  CAS  PubMed  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci—a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  CAS  PubMed  Google Scholar 

  • Petersen G, Seberg O (2000) Phylogenetic evidence of excision of stowaway miniature inverted-repeat transposable elements in Triticeae (Poaceae). Mol Biol Evol 17:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Posey JE, Pytlos MJ, Sinden RR, Roth DB (2006) Target DNA structure plays a crucial role in RAG transposition. PLoS Biol 4:E350

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulter RT (2003) Vertebrate Helitrons and other novel Helitrons. Gene 313:201–212

    Article  CAS  PubMed  Google Scholar 

  • Prasad MD, Muthulakshmi M, Madju M, Archak S, Mita K, Nagaraju J (2005) Survey analysis of microsatellites in the Silkworm, Bombyx mori: freqeuncy distribution, mutations, marker potential and their conservation in heterologous species. Genetics 169:197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesneville H, Nouaud D, Anxolabéhère D (2006) P elements and MITE relative in the whole genome sequence of Anopheles gambiae. BMC Genomics 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retroelements and other dispersed repetitive elements in barley. Plant J 17:415–425

    Article  Google Scholar 

  • Reddy KD, Abraham EG, Nagaraju J (1999) Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization. Genome 42:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Roeder GS, Rose AB, Pearlman RE (1985) Transposable element sequences involved in the enhancement of yeast gene expression. Proc Natl Acad Sci USA 82:5428–5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  CAS  Google Scholar 

  • Tu Z (1997) Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 94:7475–7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z (2000) Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 17:1313–1325

    Article  CAS  PubMed  Google Scholar 

  • Van’t Hof AE, Brakefield PM, Saccheri IJ, Zwaan BJ (2007) Evolutionary dynamics of multilocus microsatellite arrangements in the genome of the butterfly Bicyclus anynana, with implications for other Lepidoptera. Heredity 98:320–328

    Article  PubMed  Google Scholar 

  • Vivas MV, Garcia-Planells J, Ruiz C, Marfany G, Paricio N, Gonzalez-Duarte R, de Frutos R (1999) GEM, a cluster of repetitive sequences in the Drosophila subobscura genome. Gene 229:47–57

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wong GK, Ni P, Han Y, Huang X, Zhang J, Ye C, Zhang Y, Hu J, Zhang K et al (2002) RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res 12:824–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R, Feng T, Ye C, Lu C, Wang J, Li S, Wong GKS, Yang H, Wang J, Xiang Z, Zhou Z, Yu J (2005) SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res 33:D399–D402

    Article  CAS  PubMed  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Guyot R, Yahiaoui N, Keller B (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Phys 132:52–63

    Article  CAS  Google Scholar 

  • Wilder J, Hollocher H (2001) Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol 18:384–392

    Article  CAS  PubMed  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13779–13783

    Article  Google Scholar 

  • Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Article  PubMed  Google Scholar 

  • Yandava CN, Gastier JM, Pulido JC, Brody T, Sheffield V, Murray J, Buetow K, Duyk GM (1997) Characterization of Alu repeats that are associated with trinucleotide and tetranucleotide repeat microsatellites. Genome Res 7:716–724

    Article  CAS  PubMed  Google Scholar 

  • Yang HP, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9:R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HP, Hung TL, You TL, Yang TH (2006) Genome-wide comparative analysis of the highly abundant transposable element DINE-1 suggests a recent transpositional burst in Drosophila yakuba. Genetics 173:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DX (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509

    Article  PubMed  Google Scholar 

  • Zhou Q (2006) Helitron transposons on the sex chromosome of the platyfish Xiphphorus maculates and their evolution in animal genomes. Zebrafish 3:39–52

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuliani G, Hobbs H (1990) A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am J Hum Genet 46:963–969

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is a joint contribution from the United States Department of Agriculture Agriculture Research Service and the Iowa Agriculture and Home Economics Experiment Station, Ames (project 3543). Mention of proprietary products does not constitute an endorsement or a recommendation by USDA, or Iowa State University for its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad S. Coates.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, B.S., Sumerford, D.V., Hellmich, R.L. et al. A Helitron-Like Transposon Superfamily from Lepidoptera Disrupts (GAAA)n Microsatellites and is Responsible for Flanking Sequence Similarity within a Microsatellite Family. J Mol Evol 70, 275–288 (2010). https://doi.org/10.1007/s00239-010-9330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9330-6

Keywords

Navigation