Skip to main content
Log in

The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

A nonrandom radial nuclear organization of genes has been well documented. This study provides further evidence that radial positioning depends on features of corresponding ∼1 Mbp chromatin domains (CDs), which represent the basic units of higher-order chromatin organization. We performed a quantitative three-dimensional analysis of the radial nuclear organization of three genes located on chromosome 1 in a DG75 Burkitt lymphoma-derived cell line. Quantitative real-time polymerase chain reaction revealed similar transcription levels for the three selected genes, whereas the total expression strength (TES) calculated as the sum of transcription of all genes annotated within a surrounding window of about 1 Mbp DNA differed for each region. Radial nuclear position of the studied CDs correlated with TES, i.e., the domain with the highest TES occupied the most interior position. Positions of CDs with stable TES values were stably maintained even under experimental conditions, resulting in genome-wide changes of the expression levels of many other genes. Our results strongly support the hypothesis that knowledge of the local chromatin environment is essential to predict the radial nuclear position of a gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

chromatin domain

CT:

chromosome territory

Ct:

cycle threshold

ΔCt:

delta (difference) in Ct value compared to the control

FISH:

fluorescence in situ hybridization

IC:

interchromatin compartment

ICD:

interchromosomal domain

Mbp:

Mega base pairs

qPCR:

quantitative real-time polymerase chain reaction

RT-PCR:

reverse transcription polymerase chain reaction

SCD:

spherical 1 Mbp chromatin domain (model)

TES:

total expression strength

References

  • Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kupper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosom Res 14(7):707–733

    Article  CAS  Google Scholar 

  • Bartova E, Kozubek S, Jirsova P, Kozubek M, Gajova H, Lukasova E, Skalnikova M, Ganova A, Koutna I, Hausmann M (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139(2):76–89

    Article  CAS  PubMed  Google Scholar 

  • Ben-Bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohen MM, Bentwich Z, Ramot B, Klein E, Klein G (1977) Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like’ malignant lymphoma (line D.G.-75). Int J Cancer 19(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Bohlander SK, Muschinsky V, Schrader K, Siebert R, Schlegelberger B, Harder L, Schemmel V, Fonatsch C, Ludwig WD, Hiddemann W, Dreyling MH (2000) Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 14(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Köhler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosome positions demonstrate a probabilistic order in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3(5):e157

    Article  PubMed  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77(5):2871–2886

    Article  CAS  PubMed  Google Scholar 

  • Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, Bachl J, Korndoerfer M, Schlee M, Holzel M, Malamoussi A, Chapman RD, Nimmerjahn F, Mautner J, Hillen W, Bujard H, Feuillard J (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33(16):e137

    Article  PubMed  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91(6):845–854

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Green J, Das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. Journal Cell Biol 182(6):1083–1097. doi:10.1083/jcb.200803174

    Article  CAS  Google Scholar 

  • Bryant S, Manning DL (1998) Formaldehyde gel electrophoresis of total RNA. Methods Mol Biol 86:69–72

    CAS  PubMed  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18(10):1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16(8):825–831

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301. doi:10.1038/35066075

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2(3):a003889. doi:10.1101/cshperspect.a003889

    Article  PubMed  Google Scholar 

  • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10(2):179–212

    Article  CAS  PubMed  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9(7):541–567

    Article  CAS  Google Scholar 

  • Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Markaki Y, Hübner B, Zunhammer A, Strickfaden H, Beichmanis S, Heß M, Schermelleh L, Cremer M, Cremer C (2011) Chromosome territory organization within the nucleus. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine. Wiley Online Library. doi:10.1002/3527600906

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131

    Article  CAS  PubMed  Google Scholar 

  • de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85(1):154–159. doi:10.1038/labinvest.3700208

    PubMed  Google Scholar 

  • Dietzel S, Jauch A, Kienle D, Qu GQ, Holtgreve-Grez H, Eils R, Münkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosom Res 6(1):25–33

    Article  CAS  Google Scholar 

  • Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2):363–375

    Article  CAS  PubMed  Google Scholar 

  • Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing beta-globin regulatory sequences. J Cell Sci 117(Pt 19):4603–4614

    Article  CAS  PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi:10.1038/nature11082

    Article  CAS  PubMed  Google Scholar 

  • Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK (1996) The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci U S A 93(10):4804–4809

    Article  CAS  PubMed  Google Scholar 

  • Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J, Vetrie D, Gorman P, Tomlinson IP, Carter NP (2003) DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosom Cancer 36(4):361–374. doi:10.1002/gcc.10155

    Article  CAS  PubMed  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114(4):212–229

    Article  PubMed  Google Scholar 

  • Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118(Pt 9):1811–1820

    Article  CAS  PubMed  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447(7143):413–417

    Article  CAS  PubMed  Google Scholar 

  • Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature 461(7261):212–217. doi:10.1038/nature08453

    Article  PubMed  Google Scholar 

  • Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Müller S (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121(Pt 11):1876–1886. doi:10.1242/jcs.026989

    Article  CAS  PubMed  Google Scholar 

  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosom Res 9(7):569–584

    Article  CAS  Google Scholar 

  • Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, de Laat W, Hager GL (2011) Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 21(5):697–706. doi:10.1101/gr.111153.110

    Article  CAS  PubMed  Google Scholar 

  • Hepperger C, Otten S, von Hase J, Dietzel S (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116(2):117–133

    Article  CAS  PubMed  Google Scholar 

  • Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008) Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma 117(6):535–551. doi:10.1007/s00412-008-0168-2

    Article  PubMed  Google Scholar 

  • Hu P, Kinyamu HK, Wang L, Martin J, Archer TK, Teng C (2008) Estrogen induces estrogen-related receptor alpha gene expression and chromatin structural changes in estrogen receptor (ER)-positive and ER-negative breast cancer cells. J Biol Chem 283(11):6752–6763. doi:10.1074/jbc.M705937200

    Article  CAS  PubMed  Google Scholar 

  • Joti Y, Hikima T, Nishino Y, Kamda F, Hihara S, Takata H, Ishikawa T, Maeshima K (2012) Chromosomes without a 30-nm chromatin fiber. Nucleus 3(5):1–7. doi:10.4161/nucl.21222

    Google Scholar 

  • Kim IH, Nagel J, Otten S, Knerr B, Eils R, Rohr K, Dietzel S (2007) Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining. BMC Biotechnol 7(1):92

    Article  PubMed  Google Scholar 

  • Kizilyaprak C, Spehner D, Devys D, Schultz P (2010) In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications. PLoS One 5(6):e11039. doi:10.1371/journal.pone.0011039

    Article  PubMed  Google Scholar 

  • Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E, Caze-Subra S, Bickmore WA, Bystricky K (2010) Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 6(4):e1000922. doi:10.1371/journal.pgen.1000922

    Article  PubMed  Google Scholar 

  • Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A (2009) Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315(12):2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18(12):1371–1384

    Article  CAS  PubMed  Google Scholar 

  • Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86(5):2803–2812. doi:10.1016/S0006-3495(04)74333-7

    Article  CAS  PubMed  Google Scholar 

  • Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116(3):285–306

    Article  PubMed  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135(5):1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115

    Article  PubMed  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2(8):1–11

    Google Scholar 

  • Li C, Wong WH (2003) DNA-Chip Analyzer (dChip). In: Parmigiani G, Garrett ES, Irizarry R, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York, pp 120–141

    Chapter  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi:10.1126/science.1181369

    Article  CAS  PubMed  Google Scholar 

  • Lossos IS, Czerwinski DK, Wechser MA, Levy R (2003) Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leuk Off J Leuk Soc Am Leuk Res Fund UK 17(4):789–795. doi:10.1038/sj.leu.2402880

    Article  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002a) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763. doi:10.1083/jcb.200207115

    Article  CAS  PubMed  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002b) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157(4):579–589. doi:10.1083/jcb.200111071

    Article  CAS  PubMed  Google Scholar 

  • Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 117(6):553–567. doi:10.1007/s00412-008-0172-6

    Article  PubMed  Google Scholar 

  • Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34(5):412–426. doi:10.1002/bies.201100176

    Article  PubMed  Google Scholar 

  • Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44

    Article  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445(7126):379–781

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11(1):R5. doi:10.1186/gb-2010-11-1-r5

    Article  PubMed  Google Scholar 

  • Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 19(1):37–51. doi:10.1007/s10577-010-9177-0

    Article  CAS  Google Scholar 

  • Moen PT Jr, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB (2004) Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 15(1):197–206

    Article  CAS  PubMed  Google Scholar 

  • Müller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24(21):9359–9370. doi:10.1128/MCB.24.21.9359-9370.2004

    Article  PubMed  Google Scholar 

  • Murmann AE, Gao J, Encinosa M, Gautier M, Peter ME, Eils R, Lichter P, Rowley JD (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311(1):14–26

    Article  CAS  PubMed  Google Scholar 

  • Nagel J, Gross B, Meggendorfer M, Preiss C, Grez M, Brack-Werner R, Dietzel S (2012) Stably integrated and expressed retroviral sequences can influence nuclear location and chromatin condensation of the integration locus. Chromosoma. doi:10.1007/s00412-012-0366-9

  • Neusser M, Schubel V, Koch A, Cremer T, Müller S (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116(3):307–320

    Article  PubMed  Google Scholar 

  • Nielsen JA, Hudson LD, Armstrong RC (2002) Nuclear organization in differentiating oligodendrocytes. J Cell Sci 115(Pt 21):4071–4079

    Article  CAS  PubMed  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5(8):e192. doi:10.1371/journal.pbio.0050192

    Article  PubMed  Google Scholar 

  • Parada L, McQueen P, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5(7):R44

    Article  PubMed  Google Scholar 

  • Postberg J, Alexandrova O, Cremer T, Lipps HJ (2005) Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 118(Pt 17):3973–3983. doi:10.1242/jcs.02497

    Article  CAS  PubMed  Google Scholar 

  • Rouquette J, Cremer C, Cremer T, Fakan S (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90. doi:10.1016/S1937-6448(10)82001-5

    Article  CAS  PubMed  Google Scholar 

  • Sadoni N, Targosz BS, Englmann A, Fesser S, Koch J, Schindelhauer D, Zink D (2008) Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 117(4):381–397. doi:10.1007/s00412-008-0157-5

    Article  CAS  PubMed  Google Scholar 

  • Sanyal A, Bau D, Marti-Renom MA, Dekker J (2011) Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol 23(3):325–331. doi:10.1016/j.ceb.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosom Res 9:77–80

    Article  CAS  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61. doi:10.1038/ng.496

    Article  CAS  PubMed  Google Scholar 

  • Skalníková M, Kozubek S, Lukášová E, Bártová E, Jirsová P, Cafourková A, Koutná I, Kozubek M (2000) Spatial arrangement of genes, centromeres and chromosomes in human blood cell nuclei and its changes during the cell cycle, differentiation and after irradiation. Chromosom Res 8(6):487–499

    Article  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276(1):10–23

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368

    Article  CAS  PubMed  Google Scholar 

  • Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645. doi:10.1038/nature03574

    Article  CAS  PubMed  Google Scholar 

  • Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5(1):44

    Article  PubMed  Google Scholar 

  • Strickfaden H, Zunhammer A, van Koningsbruggen S, Kohler D, Cremer T (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1(3):284–297. doi:10.4161/nucl.1.3.11969

    Article  PubMed  Google Scholar 

  • Szabo A, Perou CM, Karaca M, Perreard L, Palais R, Quackenbush JF, Bernard PS (2004) Statistical modeling for selecting housekeeper genes. Genome Biol 5(8):R59. doi:10.1186/gb-2004-5-8-r59

    Article  PubMed  Google Scholar 

  • Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22(4):489–498

    Article  CAS  PubMed  Google Scholar 

  • Tumbar T, Belmont AS (2001) Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 3:134–139

    Article  CAS  PubMed  Google Scholar 

  • van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116(Pt 20):4067–4075

    Article  PubMed  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    CAS  PubMed  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160(5):685–697

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D (2004) Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164(4):515–526

    Article  CAS  PubMed  Google Scholar 

  • Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272(2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Williams RR, Azuara V, Perry P, Sauer S, Dvorkina M, Jorgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher AG (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119(Pt 1):132–140

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166(6):815–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Deutsche Forschungsgemeinschaft, Collaborative Research Center 684 (SFB684) projects A2 to SD and TC and A6 to SKB. We thank Jens Nagel for the practical help with the data evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Dietzel.

Additional information

Responsible Editor: Irina Solovei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Microarray data of differentially regulated probe sets after 24 h of CALM-AF10 induction. Induced cell populations were compared to non-induced CALM/AF10+ cells, as well as induced and non-induced empty vector control cells (24 h after induction).Only differentially regulated probe sets that are associated with annotated genes are shown, as indicated in the table header. The fold differential regulation is indicated in the last column. Probe.Set.ID = affymetrix probe set identifier; Representative.Public.ID = Representative Public domain ID; UniGene.ID = Unigene id of the gene being interrogated; Gene.Symbol = Symbol of the gene; Chromosomal.Location = chromosomal location of the gene in the human genome; Ensembl = Ensembl id; Entrez.Gene = Entrez gene id; SwissProt = SwissProt id of the protein product of the gene; RefSeq.Protein.ID = RefSeq id of the protein; RefSeq.Transcript.ID = RefSeq id of the transcript; fold change = change between induced and control samples, described as a ratio of expression of a given probe set (XLS 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kölbl, A.C., Weigl, D., Mulaw, M. et al. The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains. Chromosome Res 20, 735–752 (2012). https://doi.org/10.1007/s10577-012-9309-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9309-9

Keywords

Navigation