Skip to main content
Log in

Spatial organization of housekeeping genes in interphase nuclei

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The spatial organization of the eukaryotic genome is closely related to its function. In particular, interactions of gene promoters with distant enhancer elements in active chromatin hubs and gene recruitment to common transcription factories play an important role in regulating gene transcription. Tissue-specific genes are mostly used as models to study the spatial interactions of genomic regulatory elements, while little is known as to what extent the spatial organization of chromosomes is guided by housekeeping genes, which are transcribed in the majority of cells and are considerably more abundant than transcribed tissue-specific genes. To address the issue, chromosome conformation capture on chip (4C) was employed in a genomewide probing of spatial contacts for the chicken housekeeping genes CARHSP1 and TRAP1, which are on chromosome 14. Their promoters showed a higher frequency of interactions with transcriptionally active chromosome regions and regions enriched in Sp1 general transcription factor-binding sites and CpG islands, which both mark the promoters of housekeeping genes. No such preferences were observed for a gene-poor chromosome 14 region. Further evidence for the association of housekeeping gene promoters was obtained in independent cytological visualization of nonmethylated CpG islands in individual human cell nuclei. CpG islands were observed to cluster in the nuclear space. The results testify that the interaction of housekeeping gene promoters is an important factor that determines the spatial organization of interphase chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3C:

chromosome conformation capture

4C:

chromosome conformation capture on chip

DAPI:

4′,6-diamidino-2-phenylindole

FISH:

fluorescence in situ hybridization

References

  1. Holwerda S., de Laat W. 2012. Chromatin loops, gene positioning, and gene expression. Front. Genet. 3, 217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. de Wit E., de Laat W. 2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Palstra R.J. 2009. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. Brief. Funct. Genomic Proteomic. 8, 297–309.

    Article  CAS  PubMed  Google Scholar 

  4. Gavrilov A.A., Razin S.V., Iarovaia O.V. 2012. C-methods to study 3D organization of the eukaryotic genome. Biopolymers Cell. 28, 245–251.

    Article  CAS  Google Scholar 

  5. Palstra R.J., Tolhuis B., Splinter E., Nijmeijer R., Grosveld F., de Laat W. 2003. The beta-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190–194.

    Article  CAS  PubMed  Google Scholar 

  6. de Laat W., Grosveld F. 2003. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459.

    Article  PubMed  Google Scholar 

  7. Sutherland H., Bickmore W.A. 2009. Transcription factories: gene expression in unions? Nature Rev. Genet. 10, 457–466.

    Article  CAS  PubMed  Google Scholar 

  8. Razin S.V., Gavrilov A.A., Pichugin A., Lipinski M., Iarovaia O.V., Vassetzky Y.S. 2011. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 39, 9085–9092.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Papantonis A., Cook P.R. 2013. Transcription factories: Genome organization and gene regulation. Chem. Rev. 113, 8683–8705.

    Article  CAS  PubMed  Google Scholar 

  10. Osborne C.S., Chakalova L., Brown K.E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J.A., Lopes S., Reik W., Fraser P. 2004. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  11. Faro-Trindade I., Cook P.R. 2006. Transcription factories: Structures conserved during differentiation and evolution. Biochem. Soc. Trans. 34, 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  12. Carter D.R., Eskiw C., Cook P.R. 2008. Transcription factories. Biochem. Soc. Trans. 36, 585–589.

    Article  CAS  PubMed  Google Scholar 

  13. Martin S., Failla A.V., Spori U., Cremer C., Pombo A. 2004. Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Mol. Biol. Cell. 15, 2449–2455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schoenfelder S., Sexton T., Chakalova L., Cope N.F., Horton A., Andrews S., Kurukuti S., Mitchell J.A., Umlauf D., Dimitrova D.S., Eskiw C.H., Luo Y., Wei C.L., Ruan Y., Bieker J.J., Fraser P. 2010. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genet. 42, 53–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Osborne C.S., Chakalova L., Mitchell J.A., Horton A., Wood A.L., Bolland D.J., Corcoran A.E., Fraser P. 2007. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5, e192.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Philonenko E.S., Klochkov D.B., Borunova V.V., Gavrilov A.A., Razin S.V., Iarovaia O.V. 2009. TMEM8, a non-globin gene entrapped in the globin web. Nucleic Acids Res. 37, 7394–7406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhou G.L., Xin L., Song W., Di L.J., Liu G., Wu X.S., Liu D.P., Liang C.C. 2006. Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol. Cell. Biol. 26, 5096–5105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Simonis M., Klous P., Splinter E., Moshkin Y., Willemsen R., de Wit E., van Steensel B., de Laat W. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  19. Tolhuis B., Blom M., Kerkhoven R.M., Pagie L., Teunissen H., Nieuwland M., Simonis M., de Laat W., van Lohuizen M., van Steensel B. 2011. Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet. 7, e1001343.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Splinter E., de Wit E., van de Werken H.J., Klous P., de Laat W. 2012. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods. 58, 221–230.

    Article  CAS  PubMed  Google Scholar 

  21. Kundu T.K., Rao M.R. 1999. CpG islands in chromatin organization and gene expression. J. Biochem. 125, 217–222.

    Article  CAS  PubMed  Google Scholar 

  22. Deaton A.M., Bird A. 2011. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beug H., Palmieri S., Freudenstein C., Zentgraf H., Graf T. 1982. Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. Cell. 28, 907–919.

    Article  CAS  PubMed  Google Scholar 

  24. Tolhuis B., Palstra R.J., Splinter E., Grosveld F., de Laat W. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell. 10, 1453–1465.

    Article  CAS  PubMed  Google Scholar 

  25. Gavrilov A., Eivazova E., Priozhkova I., Lipinski M., Razin S., Vassetzky Y. 2009. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol. Biol. 567, 171–188.

    Article  CAS  PubMed  Google Scholar 

  26. Langmead B., Schatz M.C., Lin J., Pop M., Salzberg S.L. 2009. Searching for SNPs with cloud computing. Genome Biol. 10, R134.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gardiner-Garden M., Frommer M. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282.

    Article  CAS  PubMed  Google Scholar 

  28. Splinter E., de Wit E., Nora E.P., Klous P., van de Werken H.J., Zhu Y., Kaaij L.J., van Ijcken W., Gribnau J., Heard E., de Laat W. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Groblewski G.E., Yoshida M., Bragado M.J., Ernst S.A., Leykam J., Williams J.A. 1998. Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J. Biol. Chem. 273, 22738–22744.

    Article  CAS  PubMed  Google Scholar 

  30. Felts S.J., Owen B.A., Nguyen P., Trepel J., Donner D.B., Toft D.O. 2000. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305–3312.

    Article  CAS  PubMed  Google Scholar 

  31. Song H.Y., Dunbar J.D., Zhang Y.X., Guo D., Donner D.B. 1995. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270, 3574–3581.

    Article  CAS  PubMed  Google Scholar 

  32. Paull T.T., Rogakou E.P., Yamazaki V., Kirchgessner C.U., Gellert M., Bonner W.M. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895.

    Article  CAS  PubMed  Google Scholar 

  33. Antequera F., Bird A. 1993. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. U. S. A. 90, 11995–11999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Xu M., Cook P.R. 2008. Similar active genes cluster in specialized transcription factories. J. Cell Biol. 181, 615–623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gavrilov A.A., Zukher I.S., Philonenko E.S., Razin S.V., Iarovaia O.V. 2010. Mapping of the nuclear matrixbound chromatin hubs by a new M3C experimental procedure. Nucleic Acids Res. 38, 8051–8060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gavrilov A.A., Gushchanskaya E.S., Strelkova O., Zhironkina O., Kireev I.I., Iarovaia O.V., Razin S.V. 2013. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Res. 41, 3563–3575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Razin S.V., Gavrilov A.A., Ioudinkova E.S., Iarovaia O.V. 2013. Communication of genome regulatory elements in a folded chromosome. FEBS Lett. 587, 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  38. Nolis I.K., McKay D.J., Mantouvalou E., Lomvardas S., Merika M., Thanos D. 2009. Transcription factors mediate long-range enhancer-promoter interactions. Proc. Natl. Acad. Sci. U. S. A. 106, 20222–20227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Marenduzzo D., Finan K., Cook P.R. 2006. The depletion attraction: An underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gavrilov.

Additional information

Original Russian Text © E.S. Gushchanskaya, A.V. Artemov, S.V. Ulyanov, A.A. Penin, M.D. Logacheva, S.V. Razin, A.A. Gavrilov, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 1008–1018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchanskaya, E.S., Artemov, A.V., Ulyanov, S.V. et al. Spatial organization of housekeeping genes in interphase nuclei. Mol Biol 48, 886–895 (2014). https://doi.org/10.1134/S0026893314060053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314060053

Keywords

Navigation