Skip to main content
Log in

Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Several studies demonstrated a gene-density-correlated radial organization of chromosome territories (CTs) in spherically shaped nuclei of human lymphocytes or lymphoblastoid cells, while CT arrangements in flat-ellipsoidal nuclei of human fibroblasts are affected by both gene density and chromosome size. In the present study, we performed fluorescence in situ hybridization (FISH) experiments to three-dimensionally preserved nuclei (3D-FISH) from human and nonhuman primate cultured lymphoblastoid cells and fibroblasts. We investigated apes, Old, and New World monkeys showing either evolutionarily conserved karyotypes, multiple translocations, fusions, or serial fissions. Our goal was to test whether cell type specific differences of higher order chromatin arrangements are evolutionarily conserved in different primate lineages. Whole genome painting experiments and further detailed analyses of individual chromosomes indicate a gene-density-correlated higher order organization of chromatin in lymphoblastoid cell nuclei of all studied primate species, despite evolutionary chromosome reshuffling. In contrast, in primate fibroblast nuclei evolutionary translocations, fissions and fusions resulted in positional shifts of orthologous chromosome segments, thus arguing against a functional role of chromosome size-dependent spatial chromatin arrangements and for geometrical constraints in flat-ellipsoidal fibroblast nuclei. Notably, in both cell types, regions of rearranged chromosomes with distinct differences in gene density showed polarized arrangements with the more gene-dense segment oriented towards the nuclear interior. Our results indicate that nonrandom breakage and rejoining of preferentially gene-dense chromosomes or chromosome segments may have occurred during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrova O, Solovei I, Cremer T, David CN (2003) Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma 112:190–200

    Article  PubMed  CAS  Google Scholar 

  • Amrichova J, Lukasova E, Kozubek S, Kozubek M (2003) Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 289:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bartova E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98:323–336

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2006a) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50:161–176

    Google Scholar 

  • Cremer T, Cremer C (2006b) Rise, fall and resurrection of chromosome territories: a historical perspective Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50:223–272

    CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Küpper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories - a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Jauch A, Kienle D, Qu G, Holtgreve-Grez H, Eils R, Munkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6:25–33

    Article  PubMed  CAS  Google Scholar 

  • Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18:252–258

    Article  PubMed  CAS  Google Scholar 

  • Federico C, Saccone S, Andreozzi L, Motta S, Russo V, Carels N, Bernardi G (2004) The pig genome: compositional analysis and identification of the gene-richest regions in chromosomes and nuclei. Gene 343:245–251

    Article  PubMed  CAS  Google Scholar 

  • Federico C, Cantarella CD, Scavo C, Saccone S, Bed’hom B, Bernardi G (2005) Avian genomes: different karyotypes but a similar distribution of the GC-richest chromosome regions at interphase. Chromosome Res 13:785–793

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    Article  PubMed  CAS  Google Scholar 

  • Guan XY, Zhang H, Bittner M, Jiang Y, Meltzer P, Trent J (1996) Chromosome arm painting probes. Nat Genet 12:10–11

    Article  PubMed  CAS  Google Scholar 

  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584

    Article  PubMed  CAS  Google Scholar 

  • Henderson AS, Atwood KC, Warburton D (1976) Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Symphalangus syndactylus: comparison to related primates. Chromosoma 59:147–155

    Article  PubMed  CAS  Google Scholar 

  • Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma DOI 10.1007/s00412-007-0098-4

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • Lemke J, Claussen J, Michel S, Chudoba I, Muhlig P, Westermann M, Sperling K, Rubtsov N, Grummt UW, Ullmann P, Kromeyer-Hauschild K, Liehr T, Claussen U (2002) The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet 71:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44

    Article  PubMed  CAS  Google Scholar 

  • Mayr C, Jasencakova Z, Meister A, Schubert I, Zink D (2003) Comparative analysis of the functional genome architecture of animal and plant cell nuclei. Chromosome Res 11:471–484

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2005) Concepts in nuclear architecture. Bioessays 27:477–487

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Sanchez I, Garcia M, Ponsa M (2006) Chromosome territory positioning of conserved homologous chromosomes in different primate species. Chromosoma 115(5):367–375

    Article  PubMed  Google Scholar 

  • Müller S, Rocchi M, Ferguson-Smith MA, Wienberg J (1997) Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization. Hum Genet 100:271–278

    Article  PubMed  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Neusser M, Stanyon R, Bigoni F, Wienberg J, Müller S (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini)-comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94:206–215

    Article  PubMed  CAS  Google Scholar 

  • Neusser M, Münch M, Anzenberger G, Müller S (2005) Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization. Cytogenet Genome Res 108:191–196

    Article  PubMed  CAS  Google Scholar 

  • Postberg J, Alexandrova O, Cremer T, Lipps HJ (2005) Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 118:3973–3983

    Article  PubMed  CAS  Google Scholar 

  • Roberts I, Wienberg J, Nacheva E, Grace C, Griffin D, Coleman N (1999) Novel method for the production of multiple colour chromosome paints for use in karyotyping by fluorescence in situ hybridisation. Genes Chromosomes Cancer 25:241–250

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Federico C, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Walter J, Cremer M, Habermann F, Schermelleh L, Cremer T (2002) FISH on three-dimensionally preserved nuclei. In: Beatty B, Mai S, Squire J (eds) FISH: a practical approach, chapter 7. Oxford University Press, Oxford, pp 119–157

    Google Scholar 

  • Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Consigliere S, Bigoni F, Ferguson-Smith M, O’Brien PC, Wienberg J (2001) Reciprocal chromosome painting between a New World primate, the woolly monkey, and humans. Chromosome Res 9:97–106

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Bruening R, Stone G, Shearin A, Bigoni F (2005) Reciprocal painting between humans, De Brazza’s and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree. Cytogenet Genome Res 108:175–182

    Article  PubMed  CAS  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002a) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99(7):4424–4429

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002b) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    PubMed  CAS  Google Scholar 

  • Tanabe H, Küpper K, Ishida T, Neusser M, Mizusawa H (2005) Inter-and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys. Cytogenet Genome Res 108:255–261

    Article  PubMed  CAS  Google Scholar 

  • Taslerova R, Kozubek S, Bartova E, Gajduskova P, Kodet R, Kozubek M (2006) Localization of genetic elements of intact and derivative chromosome 11 and 22 territories in nuclei of Ewing sarcoma cells. J Struct Biol 155:493–504

    Article  PubMed  CAS  Google Scholar 

  • van Driel R, Fransz P (2004) Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp Cell Res 296:86–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft grant MU 1850/2-1. We thank Marion Cremer, Ludwig-Maximilians-University Munich, for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Müller.

Additional information

Communicated by E.A. Nigg

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Additional FISH experiments to human and non-human primate metaphases exemplifying the pattern of chromosome rearrangements in the species investigated and outlining the probe composition used in subsequent 3D-FISH experiments (scale bar = 10 μm). 24 color M-FISH karyotyping illustrates A) multiple, complex translocations in the gibbon and B) serial fissions in Wolf’s guenon. C) human and D) orangutan chromosomes hybridized with pooled human whole chromosome and arm paint probes which were differentially labeled according to their gene density - gene-dense (blue), intermediate (red) and gene-poor (green). E) Pooled and differentially labeled human paint probes for chromosome 1, 3–6 (blue), 16–20 (green) and for human NOR bearing chromosomes 13–15, 21, 22 (red), hybridized to human metaphases. F) Human and G) gorilla metaphase hybridized with probes specific for 2pter-q13 (red) and 2q13-qter (green). H) Human and I) marmoset metaphase hybridized with 1p34-pter (green) and 1q32-qter (red) probes (DOC 811 kb)

Supplementary Figure 2

Overrepresentation of gene-dense human homologous chromosome segments in translocations during gibbon evolution. When dividing human chromosomes into three different classes of approx. 1Gbp each according to their gene density (NCBI build 35.1; http://www.ncbi.nlm.nih.gov), see Supplementary Table 1), from the 95 inter-chromosomal rearrangements that took place during gibbon evolution (Müller et al. 2003), 12 involved two gene-dense chromosomes, six rearrangements involved two chromosomes of intermediate gene-density and five involved two gene-poor chromosomes. 35 rearrangements took place between a gene-dense and an intermediate chromosome, 19 between gene-dense and gene-poor chromosomes and 18 between intermediate and gene-poor chromosomes (Note: when chromosome rearrangements were assigned to a putative last common ancestor of two or more gibbon species it was only counted once) (DOC 307 kb)

Supplementary Table 1

Classification of human chromosomes according to the gene density of each chromosome arm (NCBI build 33; http://www.ncbi.nlm.nih.gov) as gene-dense (15–27 genes/Mbp), gene-poor (0–12 genes/Mbp) or of intermediate gene density (12–15 genes/Mbp) and updated gene densities according to NCBI build 35.1. The color code refers to the probe labeling scheme used in FISH experiments illustrated in Figure 1A and Figure 2. Despite the fact that the overall number of bona fide genes has declined since, the relative gene density is still valid for most chromosomes (DOC 36 kb)

Supplementary Table 2

Statistical analysis of 3RRD evaluations obtained from 3D-FISH experiments (ARR=average relative radius; sem=standard error of the mean, P-values in red = statistically significant, P-values in blue = statistically not significant)(DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neusser, M., Schubel, V., Koch, A. et al. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116, 307–320 (2007). https://doi.org/10.1007/s00412-007-0099-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0099-3

Keywords

Navigation