Skip to main content
Log in

Reconstruction of karyotype evolution in core Glires. I. The genome homology revealed by comparative chromosome painting

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Glires represent a eutherian clade consisting of rodents and lagomorphs (hares, rabbits, and pikas). Chromosome evolution of Glires is known to have variable rates in different groups: from slowly evolving lagomorphs and squirrels to extremely rapidly evolving muroids. Previous interordinal homology maps between slowly evolving Glires were based on comparison with humans. Here, we used sets of chromosome-specific probes from Tamias sibiricus (Sciuridae), Castor fiber (Castoridae) and humans to study karyotypes of six ground squirrels (genera Marmota and Spermophilus) and one tree squirrel (genus Sciurus), mountain hare (genus Lepus), and rabbit (genus Oryctolagus). These data supplemented with GTG banding comparisons allowed us to build comparative chromosome maps. Our data showed the absence of previously found squirrel associations HSA 1/8 and 2/17 in the Eurasian ground squirrels—sousliks and woodchucks, and disruptions of squirrel HSA 10/13 and HSA 8/4/8/12/22 syntenies in the four Spermophilus species studied here. We found that the karyotypes of Sciuridae and Leporidae are highly conserved and close to the Rodentia ancestral karyotype, while Castoridae chromosomes underwent many more changes. We suggest that Lagomorpha and Sciuridae (in contrast to all other rodent families) should be considered as core Glires lineages, characterized by cytogenetically conserved karyotypes which contain chromosomal elements inherent to karyotype of common Glires ancestor. Our data allowed us to further refine the putative ancestral karyotypes of Rodentia. We also describe here the putative ancestral karyotypes of Glires and lagomorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CBG technique:

C-banding by barium hydroxide using Giemsa

CFI:

Castor fiber

EGAK:

Euarchontoglires ancestral karyotype

EuAK:

Eutherian ancestral karyotype

FISH:

Fluorescence in situ hybridization

GAK:

Glires ancestral karyotype

GTG banding:

G-banding by trypsin using Giemsa

HSA:

Homo sapiens

LAK:

Lagomorpha ancestral karyotype

MBA:

Marmota baibacina

MKA:

Marmota kastschenkoi

RAK:

Rodentia ancestral karyotype

SAK:

Sciuridae ancestral karyotype

SER:

Spermophilus erythrogenys

SMA:

Spermophilus major

SSU:

Spermophilus suslicus

SVU:

Sciurus vulgaris

SUN:

Spermophilus undulatus

TSI:

Tamias sibiricus

References

  • Brandler OV (2003) On species status of the forest-steppe marmota Marmota kastschenkoi (Rodentia, Marmotinae). Zool Zh 82:1498–1505

    Google Scholar 

  • Chantry-Darmon C, Bertaud M, Urien C (2005) Expanded comparative mapping between man and rabbit and detection of a new conserved segment between HSA22 and OCU4. Cytogenet Genome Res 111(2):134–139

    Article  PubMed  CAS  Google Scholar 

  • Chantry-Darmon C, Urien C, de Rochambeau H (2006) A first-generation microsatellite-based integrated genetic and cytogenetic map for the European rabbit (Oryctolagus cuniculus) and localization of angora and albino. Anim Genet 37(4):335–341

    Article  PubMed  CAS  Google Scholar 

  • Churakov G, Kriegs JO, Baertsch R et al (2009) Mosaic retroposon insertion patterns in placental mammals. Genome Res 19:868–875

    Article  PubMed  CAS  Google Scholar 

  • Churakov G, Sadasivuni MK, Rosenbloom KR et al (2010) Rodent evolution: back to the root. Mol Biol Evol 27(6):1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5:253–265

    PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev 8:950–963

    Article  CAS  Google Scholar 

  • Froenicke L, Muller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homeologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106(2):108–113

    Article  CAS  Google Scholar 

  • Froenicke L, Wienberg J, Stone G, Adams L, Stanyon R (2003) Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc Biol Sci 270(1522):1331–1340

    Article  Google Scholar 

  • Froenicke L (2005) Origins of primate chromosomes—as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet Genome Res 108:122–138

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L, Caldés MG, Graphodatsky A et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:306–310

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, Perelman PL et al (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96(1–4):137–145

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Sablina OV (2006) Selected karyotypes. In: O’Brien SJ, Nash WG, Menninger JS (eds) Atlas of mammalian karyotypes. John Wiley, Chichester, pp 188, 177–179

  • Graphodatsky AS, Sablina OV, Meyer MN et al (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88:296–304

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, Dobigny G et al (2008) Tracking genome organization in rodents by Zoo-FISH. Chromosome Res 16:261–274

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PC et al (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92:243–247

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Thorne KH (2003) Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet Syst 78:267–283

    Article  PubMed  CAS  Google Scholar 

  • Hayes H, Rogel-Gaillard C, Zijlstra C et al (2002) Establishment of an R-banded rabbit karyotype nomenclature by FISH localization of 23 chromosome-specific genes on both G- and R-banded chromosomes. Cytogenet Genome Res 98:199–205

    Article  PubMed  CAS  Google Scholar 

  • Horn S, Durka W, Wolf R et al (2011) Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species. PLoS ONE 6:1–9

    Google Scholar 

  • Huchon D, Madsen O, Sibbald M et al (2002) Rodent phylogeny and a timescale of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19(7):1053–1065

    PubMed  CAS  Google Scholar 

  • Ivanitskaya E (1991) The comparative analysis of G-banding chromosomes of pikas and superspecies system of the genus Ochotona (Ochotonidae, Lagomorpha). In: Zaitsev EV (ed) Questions of systematics, faunistics and paleontology of small mammals. Zoological Institute USSR, St Petersburg, pp 180–188

    Google Scholar 

  • Kemkemer C, Kohn M, Cooper DN et al (2009) Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. BMC Evol Biol 9:84

    Article  PubMed  Google Scholar 

  • Korstanje R, O’Brien PCM, Yang F et al (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86:317–322

    Article  PubMed  CAS  Google Scholar 

  • Kriegs JO, Churakov G, Jurka J et al (2007) Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 23:158–161

    Article  PubMed  CAS  Google Scholar 

  • Lanier HC, Olson LE (2009) Inferring divergence times within pikas (Ochotona ssp.) using mtDNA and relaxed molecular dating techniques. Mol Phylogenet Evol 53:1–12

    Article  PubMed  CAS  Google Scholar 

  • Li T, O’Brien P, Biltueva L et al (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chomosome Res 12:317–355

    Article  Google Scholar 

  • Li T, Wang J, Su W, Nie W, Yang F (2006) Karyotypic evolution of the family Sciuridae: inferences from the genome organizations of ground squirrels. Cytogenet Gen Res 112:270–276

    Article  CAS  Google Scholar 

  • Liu Y, Ye J, Fu B et al (2011) Molecular cytogenetic characterization of the genome organization of the 6-banded armadillo (Euphractus sexcinctus). Cytogenet Genome Res 132(1–2):31–40

    Article  PubMed  CAS  Google Scholar 

  • Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299:1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Murphy W, Eizirik E, Johnson W, Zhang J, Ryder O, O’Brien S (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Murphy W, Eizirik E, O’Brien S et al (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  PubMed  CAS  Google Scholar 

  • Murphy W, Stanyon R, O’Brien S (2001c) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2(6):reviews 0005.1–0005.8

    Article  Google Scholar 

  • Murphy W, Larkin DM, Everts-van der Wind A et al (2005) Dynamics of mammalian chromosome evolution inferred multispecies comparative maps. Science 309:613–617

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Wang J, O’Brien PC, Fu B, Ying T (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and GTG-banding. Chromosome Res 10:209–222

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. PNAS 103:9929–9934

    Article  PubMed  CAS  Google Scholar 

  • Perelman P, Graphodatsky AS, Serdukona NA et al (2005) Karyotypic conservatism in the suborder Feliformia (Order Carnivora). Cytogenet Genome Res 108:348–354

    Article  PubMed  CAS  Google Scholar 

  • Petit D, Couturier J, Viegas-Pequignot E, Lombard M, Dutrillaux B (1984) Great degree of homeology between the ancestral karyotype of squirrels (Rodents) and that of Primates and Carnivora. Ann Génét 27:201–212

    PubMed  CAS  Google Scholar 

  • Petit D, Dutrillaux B (1985) Chromosomal phylogeny of the seven species of Sciurinae. Ann Génét 28:13–18

    PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2003a) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11:605–618

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Bonnet-Garnier A, Lombard M, Dutrillaux B (2003b) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by ZOO-FISH with human probes. Chromosome Res 11:597–603

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ (1980) Comparative chromosome studies in the family Leporidae (Lagomorpha, Mammalia). Cytogenet Cell Genet 28:64–70

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Elder FFB, Chapman JA (1983a) Karyotypic conservatism in the genus Lepus (order Lagomorpha). Can J Genet Cytol 25:540–544

    PubMed  CAS  Google Scholar 

  • Robinson TJ, Elder FFB, Chapman JA (1983b) Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha): S. aquaticus, S. floridanus, and S. transitionalis. Cytogenet Cell Genet 35:216–222

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Elder FFB, Chapman JA (1984) Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audubonii, S. idahoensis, S. nuttallii, and S. palustris. Cytogenet Cell Genet 38:282–289

    Article  PubMed  CAS  Google Scholar 

  • Robinson, Ruiz-Herrera (2008) Defining the ancestral eutherian karyotype: a cladistic interpretation of chromosome painting and genome sequence assembly data. Chromosome Res 16:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Yang F, Harrison WR (2002) Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha). Cytogenet Genome Res 96:223–227

    Article  PubMed  CAS  Google Scholar 

  • Romanenko SA, Perelman PL, Serdukova NA et al (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17:1183–1192

    Article  PubMed  Google Scholar 

  • Romanenko SA, Sitnikova NA, Beklemisheva VR, Perelman PL, Serdukova NA, Graphodatsky AS (2010) Comparative cytogenetics of rodents. Russ J Genet 46(9):1143–1145

    Article  Google Scholar 

  • Romanenko SA, Sitnikova NA, Serdukova NA et al (2007a) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:891–897

    Article  PubMed  CAS  Google Scholar 

  • Romanenko SA, Volobuev VT, Perelman PL et al (2007b) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15:283–297

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 11:971–972

    Article  Google Scholar 

  • Sitnikova NA, Romanenko SA, O’Brien PCM et al (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:447–456

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82(2):245–249

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Garofalo F, Bigoni F (2008) Reconstruction of ancestral genomes. In Encyclopedia Life Sci. doi:10.1002/9780470015902.a0020752

    Google Scholar 

  • Stock AD (1976) Chromosome banding pattern relationships of hares, rabbits and pikas (order Lagomorpha). A phyletic interpretation. Cytogenet Cell Genet 17:78–88

    Article  PubMed  CAS  Google Scholar 

  • Sumner A (1972) A rapid technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  PubMed  CAS  Google Scholar 

  • Svartman M, Stone G, Stanyon R (2006) The ancestral eutherian karyotype is present in Xenarthra. PLoS Genet 2(7):e109

    Article  PubMed  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5

    Article  PubMed  CAS  Google Scholar 

  • Ward OG, Graphodatsky AS, Wurster-Hill DH et al (1991) Cytogenetics of beavers: a case of monobrachial fusions. Genome 34:324–328

    Article  Google Scholar 

  • Yang F, Alkalaeva E, Perelman P et al (2003) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100(3):1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic map. Genomics 62:189–202

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PCM, Ferguson-Smith MA (2000) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8:219–227

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Nie W, Wang J et al (2011) Genome-wide comparative chromosome map between human and the Forrest’s pika (Ochotona forresti) established by cross-species chromosome painting: further support for the Glires hypothesis. Cytogenet Genome Res 132(1–2):41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded in part by research grants from MCB and SB RAS Programs, Russian Fund for Basic Research 09-04-00851-a (A.S.G.) and 11-04-00673-• (S.A.R.), and Russian Federation President’s grant MK-2241.2009.4 (S.A.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Romanenko.

Additional information

Responsible Editor: Herbert Macgregor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beklemisheva, V.R., Romanenko, S.A., Biltueva, L.S. et al. Reconstruction of karyotype evolution in core Glires. I. The genome homology revealed by comparative chromosome painting. Chromosome Res 19, 549–565 (2011). https://doi.org/10.1007/s10577-011-9210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9210-y

Keywords

Navigation