Skip to main content
Log in

Comparative FISH mapping of Daucus species (Apiaceae family)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The cytogenetic characterization of the carrot genome (Daucus carota L., 2n = 18) has been limited so far, partly because of its somatic chromosome morphology and scant of chromosome markers. Here, we integrate the carrot linkage groups with pachytene chromosomes by fluorescent in situ hybridization (FISH) mapping genetically anchored bacterial artificial chromosomes (BACs). We isolated a satellite repeat from the centromeric regions of the carrot chromosomes, which facilitated the study of the pachytene-based karyotype and demonstrated that heterochromatic domains were mainly confined to the pericentromeric regions of each chromosome. Chromosome-specific BACs were used to: (1) physically locate genetically unanchored DNA sequences, (2) reveal relationships between genetic and physical distances, and (3) address chromosome evolution in Daucus. Most carrot BACs generated distinct FISH signals in 22-chromosome Daucus species, providing evidence for syntenic chromosome segments and rearrangements among them. These results provide a foundation for further cytogenetic characterization and chromosome evolution studies in Daucus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

DAPI:

4′,6-Diamidino-2-phenylindole

FISH:

Fluorescent in situ hybridization

LG:

Linkage group

STS:

Sequence-tagged site marker

SSR:

Simple sequence repeats

SCAR:

Sequence-characterized amplified region

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Barton DW (1950) Pachytene morphology of the tomato chromosome complement. Am J Bot 37:639–643

    Article  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Bowman M, Senalik D, Matvienko M, Van Deynze A, Simon PW (2010) Developing genomic resources for the Apiaceae. In: Plant & Animal Genomes XVIII Conference, San Diego, CA, 9–13 January 2010. P037.

  • Cavagnaro PF, Chung SM, Szklarczyk M et al (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288

    Article  PubMed  CAS  Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S, Atkins AE, Simon PW (2010) New carrot microsatellites—linkage mapping, diversity analysis and transferability to other Apiaceae. In: Plant & Animal Genomes XVIII Conference, San Diego, CA, 9–13 January 2010. P038.

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001a) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    PubMed  CAS  Google Scholar 

  • Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001b) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Dempsey E (1994) Traditional analysis of maize pachytene chromosomes. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 432–441

    Google Scholar 

  • Dong F, Song J, Naess SK, Helgeson JP, Gebhardt G, Jiang J (2000) Development and applications of a set of chromosome specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvořák J (1995) Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367–1377

    PubMed  CAS  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:92–105

    Google Scholar 

  • Fonsêca A, Ferreira J, Barros R, dos Santos T et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Res 18:487–502

    Article  PubMed  Google Scholar 

  • Fransz P, Armstrong A, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Bedrock JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 109:1346–1352

    Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  PubMed  CAS  Google Scholar 

  • Grzebelus D, Jagosz B, Simon PW (2007) The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390:67–74

    Article  PubMed  CAS  Google Scholar 

  • Han YH, Zhang ZH, Liu CX et al (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Nat Acad Sci USA 106:14937–14941

    Article  PubMed  CAS  Google Scholar 

  • Iovene M, Grzebelus E, Carputo D, Jiang J, Simon PW (2008a) Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. Am J Bot 95:793–804

    Article  Google Scholar 

  • Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J (2008b) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE et al (2002) A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Islam-Faridi MN, Klein PE et al (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    Article  PubMed  CAS  Google Scholar 

  • Koo D-H, Jiang J (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516

    Article  PubMed  CAS  Google Scholar 

  • Koo D-H, Choi H-W, Cho J, Hur Y, Bang J-W (2005) A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48:534–540

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R et al (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  PubMed  CAS  Google Scholar 

  • Lee B-Y, Downie SR (1999) A molecular phylogeny of Apiaceae tribe Caucalideae and related taxa: inferences based on ITS sequence data. Syst Bot 24:461–479

    Article  Google Scholar 

  • Lee B-Y, Levin A, Downie SR (2001) Relationships within the spiny-fruited umbellifers (Scandiceae subtribes Daucinae and Torilidinae) as assessed by phylogenetic analysis of morphological characters. Syst Bot 26:622–642

    Google Scholar 

  • Li J, Hsia A-P, Schnable PS (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10:131–135

    Article  PubMed  CAS  Google Scholar 

  • Lou Q, Iovene M, Spooner DM, Buell CR, Jiang J (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Van Eck J, Zhou X et al (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  PubMed  CAS  Google Scholar 

  • Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed  CAS  Google Scholar 

  • Mézard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534

    Article  PubMed  Google Scholar 

  • Moore DM (1971) Chromosome studies in the Umbelliferae. In: Heywood VH (ed) The biology and chemistry of the Umbelliferae. Academic, London, UK, pp 233–255

    Google Scholar 

  • Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Fukui K (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 18:287–299

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417

    Article  PubMed  CAS  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publishing, New York

    Google Scholar 

  • Sáenz Laín C (1981) Research on Daucus L. (Umbelliferae). An Inst Botanico AJ Cavanilles 37:481–533

    Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 268:122–129

    Article  PubMed  CAS  Google Scholar 

  • Santos CAF, Simon PW (2004) Merging carrot linkage groups based on conserved dominant AFLP markers in F2 populations. J Amer Soc Hort Sci 129:211–217

    CAS  Google Scholar 

  • Schrader O, Ahne R, Fuchs J (2003) Karyoptype analysis of Daucus carota L. using Giemsa C-Banding and FISH of 5S and 18S–25S rRNA specific genes. Caryologia 56:149–154

    Google Scholar 

  • Sharma AK, Ghosh C (1954) Cytogenetics of some of the Indian umbellifers. Genetica 27:17–44

    Article  PubMed  CAS  Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–189

    Google Scholar 

  • Simon PW, Freeman RE, Vieira JV (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of Plant Breeding, Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae, vol 2. Springer, Berlin, pp 327–357

    Google Scholar 

  • Sutton GG, White O, Adams MD, Kerlavage AR (1995) TIGR assembler: a new tool for assembling large shotgun sequencing projects. Genome 1:9–19

    CAS  Google Scholar 

  • Tang X, de Boer JM, vanEck HJ, Bachem CWB, Visser RGF, de Jong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:899–915

    Article  PubMed  CAS  Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64

    Article  CAS  Google Scholar 

  • Walling JG, Shoemaker RC, Young ND, Mudge J, Jackson SA (2006) Chromosome level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Wang C-JR, Harper L, Cande ZW (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Yang Z, Shu C et al (2009) Higher axial-resolution and sensitivity pachytene fluorescence in situ hybridization protocol in tetraploid cotton. Chromosome Res 17:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Yan HH, Jin W, Nagaki K et al (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  PubMed  CAS  Google Scholar 

  • Yan HH, Ito H, Nobuta K et al (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Yang Q, Bao W et al (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Ouyang S, Iovene M et al (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics 9:286

    Article  PubMed  Google Scholar 

  • Zwick MS, Hanson RE, Mcknight TD et al (1997) A rapid procedure for the isolation of Cot-1 DNA from plants. Genome 40:138–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Jiri Macas for his invaluable help in the analysis of the BAC sequences generated in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon.

Additional information

Responsible Editor: Pat Heslop-Harrison.

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. HM565961.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(ppt 9515 kb)

ESM 2

(TXT 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iovene, M., Cavagnaro, P.F., Senalik, D. et al. Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19, 493–506 (2011). https://doi.org/10.1007/s10577-011-9202-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9202-y

Keywords

Navigation