Skip to main content
Log in

Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Carrot is the most economically important member of the Apiaceae family and a major source of provitamin A carotenoids in the human diet. However, carrot molecular resources are relatively underdeveloped, hampering a number of genetic studies. Here, we report on the synthesis and characterization of a bacterial artificial chromosome (BAC) library of carrot. The library is 17.3-fold redundant and consists of 92,160 clones with an average insert size of 121 kb. To provide an overview of the composition and organization of the carrot nuclear genome we generated and analyzed 2,696 BAC-end sequences (BES) from nearly 2,000 BACs, totaling 1.74 Mb of BES. This analysis revealed that 14% of the BES consists of known repetitive elements, with transposable elements representing more than 80% of this fraction. Eleven novel carrot repetitive elements were identified, covering 8.5% of the BES. Analysis of microsatellites showed a comparably low frequency for these elements in the carrot BES. Comparisons of the translated BES with protein databases indicated that approximately 10% of the carrot genome represents coding sequences. Moreover, among eight dicot species used for comparison purposes, carrot BES had highest homology to protein-coding sequences from tomato. This deep-coverage library will aid carrot breeding and genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam-Blondon AF, Bernole A, Faes G, Lamoureux D, Pateyron S, Grando MS, Caboche M, Velasco R, Chalhoub B (2005) Construction and characterization of BAC libraries from major grapevine cultivars. Theor Appl Genet 110:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ammiraju JSS, Lwo M, Goicochea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H-R, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing RA (2006) The Oryra bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  Google Scholar 

  • Ansay M, Simon PW (2003) Mapping cytoplasmic male sterility restorer genes in carrot. Plant and animal genomes XI conference, P693 San Diego

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  CAS  Google Scholar 

  • Bach IC, Olesen A, Simon PW (2002) PCR-based markers to differentiate the petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365

    Article  CAS  Google Scholar 

  • Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  PubMed  CAS  Google Scholar 

  • Birren B, Green ED, Klapholz S (1997) Genome analysis: a laboratory manual. Analyzing DNA, vol 1. Cold Spring Harbor, New York

    Google Scholar 

  • Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic analysis in carrot. J Am Soc Hortic Sci 124:32–38

    CAS  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Bradeen JM, Naess SK, Song J, Haberlach GT, Wielgus SM, Buel CR, Jiang J, Helgeson JP (2003) Concomitant reiterative BAC walking and fine genetic mapping enable physical map development for the broad-spectrum late blight resistance region, RB. Mol Genet Genomics 269(5):603–611

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hat-Weld J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:1–10

    Article  CAS  Google Scholar 

  • Cheng Z, Presting G, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    PubMed  CAS  Google Scholar 

  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Datema E, Mueller LA, Buels R, Giovannoni JJ, Visser RGF, Stiekema WJ, van Ham RCHJ (2008) Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biol 8:34–50

    Article  PubMed  Google Scholar 

  • Devon RS, Porteous DJ, Brookes AJ (1995) Splinkerettes-improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23(9):1644–1645

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II. Error probabilities. Genome Res 8(3):186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Res 8(3):175–185

    PubMed  CAS  Google Scholar 

  • Frelichowski JE, Palmer MB, Main D, Tomkins JP, Cantrell RG, Stelly DM, Yu J, Kohel RJ, Ulloa M (2006) Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics 275:479–491

    Article  PubMed  CAS  Google Scholar 

  • Fuchs J, Kühne M, Schubert I (1998) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107(4):272–276

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W, Chen L, Cooper B, Park S, Wood T, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Grzebelus D, Simon PW (2008) Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica doi:10.1007/s10709-008-9282-6

  • Grzebelus D, Yau YY, Simon PW (2006) Master—a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics 275:450–459

    Article  PubMed  CAS  Google Scholar 

  • Grzebelus D, Jagosz B, Simon PW (2007) The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390:67–64

    Google Scholar 

  • Hamilton CM, Frary A, Xu Y, Tanksley SD, Zhang HB (1999) Construction of tomato genomic DNA libraries in a binary BAC (BIBAC) vector. Plant J 18:223–229

    Article  CAS  Google Scholar 

  • Han Y, Korban SS (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581–588

    Article  PubMed  CAS  Google Scholar 

  • Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breed 4:119–127

    Article  CAS  Google Scholar 

  • Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228

    Article  PubMed  CAS  Google Scholar 

  • Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Hong CP, Plaha P, Koo DH, Yang TJ, Choi SR, Lee YK, Hhm T, Bang JW, Edwards D, Bancroft I, Park BS, Lee J, Lim YP (2006) A survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells 22(3):300–307

    PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huo N, Lazo GR, Vogel JP, You FM, Ma Y, Hayden DM, Coleman-Derr D, Hill TA, Dvorak J, Anderson OD, Luo MC, Gu YQ (2008) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 8:135–147

    Article  PubMed  CAS  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangements in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Just BJ (2004) Genetic mapping of carotenoid pathway structural genes and major gene QTLs for carotenoid accumulation in wild and domesticated carrot (Daucus carota L). Ph.D. thesis, plant breeding and plant genetics, University of Wisconsin, USA

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213–218

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, San Miguel P, Nelson W, Collura K, Wissotski M, Walling JG, Kim JP, Jackson SA, Soderlund C, Wing RA (2007) Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 176:379–390

    Article  PubMed  CAS  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and censor. BMC Bioinformatics 7:474–480

    Article  PubMed  Google Scholar 

  • Lai CWJ, Yu Q, Hou S, Skelton RL, Jones MR, Lewis KLT, Murray J, Eustice M, Guan P, Agbayani R, Moore PH, Ming R, Presting GG (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1–12

    Article  PubMed  CAS  Google Scholar 

  • Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X, Ferreira PL, Jourdan I, Pot D, Andrade AC, Glaszmann JC, Vieira LGE, Piffanelli P (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Suderlund CA, Mayer KFX, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Metzgar D, Liu L, Hansen C, Dybvig K, Wills C (2002) Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. Genome Res 12:408–413

    Article  PubMed  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe I (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanfey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature 30:194–200

    CAS  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  CAS  Google Scholar 

  • Osoegawa K, Vessere GM, Shu CL, Hoskins RA, Abad JP, de Pablos B, Villasante A, de Jong PJ (2007) BAC clones generated from sheared DNA. Genomics 89:291–299

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Article  PubMed  CAS  Google Scholar 

  • Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity and evolution of rice chromosome 10. Science 300:1566–1569

    Article  Google Scholar 

  • Robison M, Wolyn DJ (2002) Complex organization of the mitochondrial genome of petaloid CMS carrot. Mol Genet Genomics 268:232–239

    Article  PubMed  CAS  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related Umbelliferae. CABI Publishing. New York, p 294

  • Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222–235

    Article  PubMed  Google Scholar 

  • Šafár J, Noa-Carrazana JC, Vrána J, Bartoš J, Alkhimova O, Sabau X, Šimková H, Lheureux F, Caruana ML, Dolezel J, Piffanelli P (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47:1182–1191

    Article  PubMed  Google Scholar 

  • Santos CAF (2001) Biometrical studies and quantitative trait loci associated with major products of the carotenoid pathway of carrot (Daucus carota L.). Ph.D. thesis, University of Wisconsin, Madison

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 268:122–129

    Article  PubMed  CAS  Google Scholar 

  • Sardesai VM (1998) Introduction to clinical nutrition. Marcel Dekker, New York

    Google Scholar 

  • Shen B, Wang DM, McIntyre CL, Liu CJ (2005) A “Chinese spring” wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor Appl Genet 111:1489–1494

    Article  PubMed  CAS  Google Scholar 

  • Simon PW (1992) Genetic improvement of vegetable carotene content. In: Proceedings of 3rd international symposium. Biotech and Nutrition. Butterworth-Heinemann, pp 291–300

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Simon PW, Matthews WC, Roberts WA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742

    Article  Google Scholar 

  • Simon PW, Pollak LM, Clevidence BA, Holden JM, Haytowitz DB (2008) Plant breeding for human nutrition. Plant Breed Rev 31:325–392

    Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Carinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length, variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 48:798–815

    Google Scholar 

  • The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Tomkins JP, Davis G, Main D, Yim Y, Duru N, Musket T, Goicochea JL, Frisch DA, Coe EH Jr, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933

    CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Smith HO, Hood L (1996) A new strategy for genome sequencing. Nature 381:364–366

    Article  PubMed  CAS  Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64

    Article  CAS  Google Scholar 

  • Wiedmann RT, Nonneman DJ, Keele JW (2006) Novel porcine repetitive elements. BMC Genomics 7:304–315

    Article  PubMed  Google Scholar 

  • Zhu W, Ouyang S, Iovene M, O’Brien K, Vuong H, Jiang J, Buell RC (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics 9:286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon.

Additional information

Communicated by R. Hagemann.

Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers FJ147695–FJ150390.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1 (XLS 20 kb)

Supplement 2 (XLS 36 kb)

Supplement 3 (DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavagnaro, P.F., Chung, SM., Szklarczyk, M. et al. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281, 273–288 (2009). https://doi.org/10.1007/s00438-008-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0411-9

Keywords

Navigation