Skip to main content
Log in

Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Pericentromeric repeats have been claimed to mediate centric fusions through heterologous recombination of arrays of tandemly repeated and highly homogenized motifs. However, mammalian case studies are essentially restricted to pathologic fusions in human, or to the house mouse Roberstonian (Rb) races. We here provide an example in a wild gerbil rodent, Gerbillus nigeriae, which displays an extensive Rb polymorphism, with 2n ranging between 2n = 60 and 74. The distribution of two closely related repeats, GERB1 and GERB2 that were previously isolated by Volobouev et al. (Chromosoma 104:252–259, 1995) in this African species, were investigated in the genomes of seven individuals with various diploid numbers. Our results clearly show that GERB1 and GERB2 are organized in a non-random manner, with GERB2 and GERB1 being clearly juxtacentromeric and centromeric, respectively. Finally, cloning and sequencing revealed that, unlike GERB2, GERB1 monomers display a more homogeneous organization at both the nucleotide and structural levels. Altogether, our results point toward a pivotal role of GERB1 repeats in the mediation of Rb fusions through heterologous recombination, with some evidence of subsequent loss of repeats after the Rb fusion during the course of evolution of metacentric elements. Moreover, the repeat pattern observed in G. nigeriae closely matches the organization and sequence structure of satellite DNAs described in human acrocentrics. Consequently, G. nigeriae appears as an additional model for the study of repeat evolution and its role in centric fusions and their consequences in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-diamino-2-phenylindole

FISH:

fluorescent in situ hybridization

FITC:

fluorescein isothiocyanate

LINE-1:

long interspersed element one

PCR:

polymerase chain reaction

PRINS:

primed in situ hybridization

Rb fusion:

Robertsonian fusion

References

  • Avner D, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Genet 2:59–67

    CAS  Google Scholar 

  • Bâ K, Thiam M, Dobigny G et al (2006) Hypothesis on the origin of invasion of Senegal by Gerbillus nigeriae based on chromosomal data. Mammalia 70:303–305

    Article  Google Scholar 

  • Banaszek A, Taylor JRE, Ochocinska D, Chetnicki W (2009) Robertsonian polymorphism in the common shrew (Sorex araneus L.) and selective advantage of heteroygotes indicated by their higher maximum metabolic rates. Heredity 102:155–162

    Article  PubMed  CAS  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay R, Berend SA, Page SL, Choo KHA, Shaffer LG (2001) Satellite III sequences on 14p and their relevance to Roberstonian translocation formation. Chromosome Res 9:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bayes JJ, Malik HS (2008) The evolution of centromeric DNA sequences. In: Encyclopedia of life sciences. J. Wiley J and Sons, Ltd, Chichester

    Google Scholar 

  • Bonnet-Garnier A, Lacaze S, Beckers JF, Berland HM, Pinton A, Yerle M, Ducos A (2008) Meiotic segregation analysis in cow carrying the t(1;29) Robertsonian translocation. Cytogenet Genome Res 120:91–96

    Article  PubMed  CAS  Google Scholar 

  • Castiglia R, Garagna S, Merico V, Oguge N, Corti M (2006) Cytogenetics if a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14:587–594

    Article  PubMed  CAS  Google Scholar 

  • Chaves R, Adega R, Heslop-Harrison JS, Guedes-Pinto H, Wienberg J (2003) Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res 11:641–648

    Article  PubMed  CAS  Google Scholar 

  • Choo KH, Vissel B, Brown R, Filby RG, Earle E (1988) Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations. Nucl Acids Res 16:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Dobigny G, Nomao A, Gautun JC (2002) A cytotaxonomic survey of rodents from Niger: implications for systematics, biodiversity and biogeography. Mammalia 66:495–523

    Article  Google Scholar 

  • Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V (2005) Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity 95:358–368

    Article  PubMed  CAS  Google Scholar 

  • Evans EP, Breckon G, Ford CE (1963) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294

    Article  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite sequences DNA in the pericentromeric area. Chromosoma 103:685–692

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Nat Acad Sci USA 98:171–175

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Capanna E, Redi CA (2002) High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet Genome Res 96:125–129

    Article  PubMed  CAS  Google Scholar 

  • Gardner RJM, Sutherland GR et al (1996) Chromosome abnormalities and genetic counseling. Oxford Monographs on Medical Genetics n°29, Oxford University Press, New York and Oxford, p 478

    Google Scholar 

  • Hansen RS (2003) X inactivation-specific methylation of LINE-1 elements by DNMTB3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12:2559–2567

    Article  PubMed  CAS  Google Scholar 

  • Hartmann N, Scherthan H (2004) Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Chromosoma 112:213–220

    Article  PubMed  CAS  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl Acids Res 19:4780

    Article  PubMed  CAS  Google Scholar 

  • Kalitsis P, Griffiths B, Choo KHA (2006) Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Proc Nat Acad Sci USA 103:8786–8791

    Article  PubMed  CAS  Google Scholar 

  • Koch J (1996) Primed in situ Labeling as a fast and sensitive method for the detection of specific DNA sequences in chromosomes and nuclei. Methods Comp Methods Enzymol 9:122–128

    Article  CAS  Google Scholar 

  • Li YC, Lee C, Hsu TH, Li SY, Lin CC (2000) Direct vizualisation of the genomic distribution and organization of two cervid centromeric satellite DNA families. Cytogenet Cell Genet 89:192–198

    Article  PubMed  CAS  Google Scholar 

  • Lyon M (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Nat Acad Sci USA 97:6248–6249

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Nie W, Wang J et al (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving inter-family phylogenetic relationships. Chromosome Res 16:129–143

    Article  CAS  Google Scholar 

  • Modi B, Gallagher DS, Womack JE (1996) Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia). J Mol Evol 42:337–349

    Article  PubMed  CAS  Google Scholar 

  • Musser GG, Carleton MD (2005) Gerbillus nigeriae. In: Wilson DE, Reeder DAM (eds) Mammal species of the World: a taxonomic and geographic reference, vol. 2. The John Hopkins Univ. Press, p 1230

  • Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3:399–409

    Article  PubMed  CAS  Google Scholar 

  • Nomao A (2002) Contribution à la connaissance des rongeurs du Niger. Caractéristiques biologiques et écologiques d’une population de Gerbillus nigeriae (Rodentia, Gerbillinae) dans la ferme de Kolo. PhD Thesis, Unov. Abdou Moumouni, Niamey, Niger

  • Pialek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Linnean Soc 85:535–563

    Article  Google Scholar 

  • Rambau RV, Robinson TJ, Stanyon R (2003) Molecular genetics of Rhabdomys pumilio subspecies boundaries: mtDNA phylogeography and karyotypic analysis by fluorescence in situ hybridization. Mol Phylogenet Evol 28:564–573

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Zuccotti M (1990) Robertsonian chromosome formation and fixation: the genomic scenario. Biol J Linnean Soc 41:235–255

    Article  Google Scholar 

  • Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosomes and variation. J Morph 27:179–331

    Article  Google Scholar 

  • Robinson T, Elder FFB (1993) Cytogenetics: its role in wildlife management and the genetic conservation if mammals. Biol Cons 63:47–51

    Article  Google Scholar 

  • Roizes G (2006) Human centromeric alphoid domains are periodically homogenized: mechanism and implications for centromere functioning. Nucl Acid Res 34:1912–1924

    Article  CAS  Google Scholar 

  • Ropiquet A, Gerbault-Seureau M, Deuve JL, Gilbert C, Pagacova E, Chai N, Rubes J, Hassanin A (2008) Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): the karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res 16:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Wray GA, Willard HF (2006) The evolutionary dynamics of α-satellite. Genome Res 16:88–96

    Article  PubMed  CAS  Google Scholar 

  • Sage RD, Atchley B, Capanna E (1993) House mice as models in systematic biology. Syst Biol 42:523–561

    Google Scholar 

  • Sans-Fuentes MA, Lopez-Fuster MJ, Ventura J, Diez-Noguera A, Cambrias T (2005) Effect of Robertsonian translocations on the motor activity rhythm in the house mouse. Behavior Genet 35:603–613

    Article  Google Scholar 

  • Scherthan H (1990) Localization of the repetitive telomeric sequence (TTAGGG)n in two muntjac species and implications for their karyotype evolution. Cytogenet Cell Genet 53:115–117

    Article  PubMed  CAS  Google Scholar 

  • Schroder JH, Otten I-S (1985) Increase aggressiveness of male mice carrying a reciprocal translocation, T(10, 13), in the heterozygous state. Behavior Genet 15:43–51

    Article  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosome. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov IA (2009) The evolutionary origin of man can be traced in the layers of defunct ancestral satellites flanking the active centromeres of human chromosomes. PLoS Genet 5:e1000641

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 7:304–306

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thiam M, Bâ K, Duplantier JM (2008) Impact of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis. African Zool 43:135–143

    Article  Google Scholar 

  • Tranier M (1975) Originalité du caryotype de Gerbillus nigeriae (Rongeurs, Gerbillidés). Mammalia 39:703–704

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multi-directional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Boniotto M, Cardone MF et al (2001) Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur. Gene 275:305–310

    Article  PubMed  CAS  Google Scholar 

  • Veyrunes F, Dobigny G, Yang F et al (2006) Phylogenomics of the genus Mus (Rodentia, Muridae): extensive genome repatterning is not restricted to the house mouse. Proc Roy Soc London B 273:2925–2934

    Article  Google Scholar 

  • Viegas-Péquignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34:158–167

    Article  PubMed  Google Scholar 

  • Viegas-Péquignot E, Benazzou T, Prod’Homme M, Dutrillaux B, Petter F (1984) Characterization of a very complex constitutive heterochromatin in two Gerbillus species (Rodentia). Chromosoma 89:42–47

    Article  PubMed  Google Scholar 

  • Volobouev V, Viegas-Péquignot E, Petter F, Gautun JC, Sicard B, Dutrillaux B (1988) Complex chromosomal polymorphism in Gerbillus nigeriae (Rodentia, Gerbillidae). J Mammal 69:131–134

    Article  Google Scholar 

  • Volobouev V, Vogt N, Viegas-Péquignot E, Malfoy B, Dutrillaux B (1995) Characterization and chromosomal location of two repeated DNAs in three Gerbillus species. Chromosoma 104:252–259

    Article  PubMed  CAS  Google Scholar 

  • Volobouev V, Aniskin VM, Lecompte E, Ducroz JF (2002) Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenet Genome Res 96:261–275

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Dobigny G, Pardini AT, Robinson TJ (2004) LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 113:137–144

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Ruiz-Herrera A, Dobigny G, Garcia-Caldès M, Robinson TJ (2007) Sex chromosomes of basal placental mammals. Chromosoma 116:511–518

    Article  PubMed  Google Scholar 

  • Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ (1991) Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Heredity 82:369–377

    CAS  Google Scholar 

  • Wojcik JM, Borodin PM, Fedyk S et al (2003) The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia 67:169–178

    Article  Google Scholar 

  • Yang F, O’Brien PCM, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ambroise Dalecky and Massamba Thiam kindly provided the gerbil samples from Mali and Senegal for cell culture purposes. Most of our survey, including field work in Niger, was funded by the IRD and the ANR (program no. ANR-05-JC05-48631 led by G. Dobigny). Work permit in the W National Park area was kindly provided by Mr Soumeïla Sahailou (coord. ECOPAS program). We would also like to thank the IFR119 “Montpellier Environnement Biodiversité” who partly funded some of the cell culture and fluorescence microscopy equipment used in this study. We are grateful to Janice Britton-Davidian for very helpful comments and stimulating discussions, as well as to Malcolm Ferguson-Smith and Herbert McGregor for their help with the English wording.

We wish to dedicate this work to our dear friend and colleague Adamou Nomao who spent 4 years working on G. nigeriae, but left us precociously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauthier Dobigny.

Additional information

Responsible Editor: Fentang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure

Sequence alignment of the four GERB1-containing clones (numbers 2–5) as well as Volobouev et al.’s (1995) one (number 1). For clarity, each clone was aligned following the motifs A–H (271 bp) substructure. See text and Fig. 5 for details. (PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, P., Hima, K. & Dobigny, G. Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae . Chromosome Res 18, 473–486 (2010). https://doi.org/10.1007/s10577-010-9128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9128-9

Keywords

Navigation