Skip to main content
Log in

Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Three subspecies of banteng (Bos javanicus) have been described: B. j. javanicus in Java, B. j. lowi in Borneo, and B. j. birmanicus in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. In this paper we provide the first description of the karyotype of the Cambodian banteng. The chromosomal complement of B. j. birmanicus differs from that of B. j. javanicus, which was previously found to be similar to that of cattle, Bos taurus (2n = 60). The Cambodian banteng karyotype has a diploid number of 2n = 56 (FN = 62) and the karyotype consists of 26 pairs of acrocentric chromosomes and two pairs of submetacentric chromosomes. Comparisons with other species of the subtribe Bovina show that the two pairs of bi-armed chromosomes resulted from two centric fusions involving the equivalent of cattle chromosomes 1 and 29, and 2 and 28, respectively. Cross-species fluorescence in-situ hybridization (FISH) with B. taurus whole chromosome paints and satellite DNA I probes was used to identify the chromosomes involved in the translocations, and their orientation. We suggest that Robertsonian translocations (1;29) and (2;28) have been fixed in the common ancestor of Cambodian banteng as a consequence of hybridization with the kouprey (Bos sauveli) during the Pleistocene epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

BJAb:

Bos javanicus birmanicus

BJAj:

Bos javanicus javanicus

BrdU:

5-bromo-2-deoxyuridine

BTA:

Bos taurus

DMEM:

Dulbecco’s Modified Eagle Medium

dUTP:

deoxyuridine triphosphate

FISH:

fluorescence in-situ hybridization

FN:

fundamental number

Mya:

million years ago

PCR:

polymerase chain reaction

Rob:

Robertsonian

SSC:

saline-sodium citrate

TN:

Tris-NaCl

References

  • Bandyopadhyay R, Heller A, Knox-DuBois C et al. (2002) Parental origin and timing of de novo Robertsonian translocation formation. Am J Hum Genet 71: 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Berland HM, Sharma A, Cribiu EP, Darre R, Boscher J, Popescu CP (1988) A new case of Robertsonian translocation in cattle. J Hered 79: 33–36.

    PubMed  CAS  Google Scholar 

  • Bohlken H (1961) Der Kouprey, Bos (Bibos) sauveli Urbain 1937. Z Saügetierkunde 26: 193–254.

    Google Scholar 

  • Bongso TA, Hilmi M, Sopian M, Zulkili S (1988) Chromosomes of Gaur cross domestic cattle hybrids. Res Vet Sci 44: 251–254.

    PubMed  CAS  Google Scholar 

  • Bonnet-Garnier A, Pinton A, Berland HM et al. (2006) Sperm nuclei analysis of 1/29 Robertsonian translocation carrier bulls using fluorescence in-situ hybridization. Cytogenet Genome Res 112: 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Brown JD, Golden D, O’Neill RJ (2008) Methylation perturbations in retroelements within the genome of a Mus interspecific hybrid correlate with double minute chromosome formation. Genomics 91: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Evans H (1978) Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet 21: 42–63.

    Article  PubMed  CAS  Google Scholar 

  • Burkin DJ, Broad TE, Jones C (1996) The chromosomal distribution and organization of sheep satellite I and II centromeric DNA using characterized sheep-hamster somatic cell hybrids. Chromosome Res 4: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Byers O, Hedges S, Seal US (1995) Asian wild cattle conservation assessment and management plan workshop. Working document. Apple Valley, MN: IUCN/SSC Conservation Breeding Specialist Group.

    Google Scholar 

  • Capanna E, Castiglia R (2004) Chromosomes and speciation in Mus musculus domesticus. Cytogenet Genome Res 105: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Chaves R, Heslop-Harrsion JS, Guedes-Pinto H (2000) Centromeric heterochromatin in the cattle Rob(1;29) translocation: alpha-satellite I sequences, in-situ MspI digestion patterns, chromomycin staining and C-bands. Chromosome Res 8: 621–626.

    Article  PubMed  CAS  Google Scholar 

  • Chaves R, Adega F, Heslop-Harrison JS, Guedes-Pinto H, Wienberg J (2003) Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res 11: 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Coolidge HJ (1940) The Indo-Chinese forest ox or kouprey. Mem Mus Compar Zool Harvard 54: 421–531.

    Google Scholar 

  • Coyne JA (1989) A test of the role of meiotic drive in chromosome evolution. Genetics 123: 241–243.

    PubMed  CAS  Google Scholar 

  • Di Meo GP, Perucatti A, Chaves R et al. (2006) Cattle Rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques. Chromosome Res 14: 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Covic M (1974) Factors influencing the heat denaturation of chromosomes. Exp Cell Res 85: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Edmond-Blanc F (1947) A contribution to the knowledge of the Cambodian wild ox or kouproh. J Mammal 28: 245–248.

    Article  Google Scholar 

  • Gaillard C, Doly J, Cortadas J, Bernardi G (1981) The primary structure of bovine satellite 1.715. Nucleic Acids Res 9: 6069–6082.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher DS Jr, Womack JE (1992) Chromosome conservation in the Bovidae. J Hered 83: 287–298.

    PubMed  Google Scholar 

  • Gallagher DS Jr, Derr JN, Womack JE (1994) Chromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype. J Hered 85: 204–210.

    PubMed  Google Scholar 

  • Gallagher DS Jr, Davis SK, De Donato M et al. (1999) A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Res 7: 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci U S A 98: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Geraads D (1992) Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla). Zool J Linn Soc 104: 193–207.

    Article  Google Scholar 

  • Gileva EA, Rakitin SB (2006) Factors of maintaining chromosome polymorphism in common vole Microtus arvalis Pallas, 1779: reduced fertility and meiotic drive. Genetika 42: 620–627.

    PubMed  CAS  Google Scholar 

  • Gray A (1972) Mammalian hybrids. A check-list with bibliography. Farnham Royal: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16: 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Groves CP (1981). Systematic relationships in the Bovini (Artiodactyla, Bovidae). Z Zool Syst Evolutionsforsch 19: 264–278.

    Article  Google Scholar 

  • Gustavsson I (1966) Chromosome abnormality in cattle. Nature 211: 865.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson I (1979) Distribution and effects of the 1/29 Robertsonian translocation in cattle. J Dairy Sci 62: 825–835.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson I, Rockborn G. (1964) Chromosome abnormality in three cases of lymphatic leukaemia in cattle. Nature 203: 990.

    Article  PubMed  CAS  Google Scholar 

  • Hanada H, Muramatsu S, Abe T, Fukushima T (1981) Robertsonian chromosome polymorphism found in a local herd of the Japanese Black Cattle. Ann Genet Sel Anim 13: 205–211.

    Article  Google Scholar 

  • Hassanin A, Douzery E (1999) Evolutionary affinities of the enigmatic Saola, (Pseudoryx nghetinhensis), in the context of the molecular phylogeny of Bovidae. Proc R Soc B 266: 893–900.

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33: 896–907.

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Ropiquet A (2007a). What is the taxonomic status of the Cambodian banteng (Bos javanicus) and does it have genetic links with the kouprey (Bos sauveli)? J Zool 271: 246–252.

    Google Scholar 

  • Hassanin A, Ropiquet A (2007b) Resolving a zoological mystery: the kouprey is a real species. Proc R Soc B 274: 2849–2855.

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L, Di Berardino D, Gustavsson I, Ferrara L, Di Meo GP (1987) Centromeric loss in translocations of centric fusion type in cattle and water buffalo. Hereditas 106: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L, Rangel-Figueiredo T, Di Meo GP, Ferrara L (1992) A new Robertsonian translocation in cattle, Rob(15;25). Cytogenet Cell Genet 59: 280–283.

    Article  PubMed  CAS  Google Scholar 

  • ISCNDB (2001) International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB 2000). Cribiu EP, Di Berardino D, Di Meo GP et al. Cytogenet Cell Genet 92: 283–299.

    Article  Google Scholar 

  • IUCN – The World Conservation Union (2006) 2006 IUCN Red List of Threatened Species. URL: http://www.iucnredlist.org. Accessed July 2, 2008.

  • Kehrer-Sawatzki H, Cooper DN (2008) Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Res 16: 41–56.

    Article  PubMed  CAS  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specifc painting probes in farm animals. Chromosome Res 10: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Lydekker R (1912) The Bornean banting. Proc Zool Soc Lond 1912: 902–906.

    Google Scholar 

  • Lydekker R (1913) Catalogue of the Ungulate Mammals in the British Museum (Natural History). Volume 1: Artiodactyla, Family Bovidae, Subfamilies Bovinae to Ovibovinae (Cattle, Sheep, Goats, Chamois, Serrows, Takin, Musk-Oxen, etc.). London: British Museum (Natural History).

    Google Scholar 

  • MacKinnon JR, Stuart SN (eds) (1988) The Kouprey: An Action Plan for its Conservation. IUCN/SSC Asian Wild Cattle Specialist Group. IUCN, Gland.

    Google Scholar 

  • Mastromonaco GF, Coppola G, Crawshaw G, DiBerardino D, King WA (2004) Identification of the homologue of the bovine Rob(1;29) in a captive gaur (Bos gaurus). Chromosome Res 12: 725–731.

    Article  PubMed  CAS  Google Scholar 

  • Meijaard E (2004) Solving mammalian riddles. A reconstruction of the Tertiary and Quaternary distribution of mammals and their palaeoenvironments in island South-East Asia. PhD Thesis. School of Archaeology and Anthropology. The Australian National University – Canberra.

  • Metcalfe CJ, Bulazel KV, Ferreri GC et al. (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177: 2507–2517.

    Article  PubMed  CAS  Google Scholar 

  • Modi WS, Gallagher DS, Womack JE (1993) Molecular organization and chromosomal localization of six highly repeated DNA families in the bovine genome. Anim Biotechnol 4: 143–161.

    Article  CAS  Google Scholar 

  • Modi WS, Gallacher DS, Womack JE (1996) Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia). J Mol Evol 42: 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Nijman IJ, Otsen M, Verkaar EL et al. (2003) Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity 90: 10–16.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJW, Eldridge MDB, Graves JAM (2001) Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids. Mamm Genome 12: 256–259.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJW, Eldridge MDB, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95: 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Orr H A (1997) Haldane’s rule. Annu Rev Ecol Syst 28: 195–218.

    Article  Google Scholar 

  • Page SL, Shaffer LG (1997) Nonhomologous Robertsonian translocations form predominantly during female meiosis. Nat Genet 15: 231–232.

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Shin JC, Han JY, Choo KH, Shaffer LG (1996) Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet 5: 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer P (1969) Considérations sur l’écologie des forêts claires du Cambodge oriental. Terre et Vie 1: 3–24.

    Google Scholar 

  • Pfeffer P, Kim-San O (1967) Le kouprey, Bos (Bibos) sauveli Urbain, 1937: Discussion systématique et statut actuel. Hypothèse sur l’origine du zébu (Bos indicus). Mammalia 31: 521–536.

    Article  Google Scholar 

  • Plucienniczak A, Skowronski J, Jaworski J (1982) Nucleotide sequence of bovine 1.715 satellite DNA and its relation to other bovine satellite sequences. J Mol Biol 158: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Qumsiyeh MB (1994) Evolution of number and morphology of mammalian chromosomes. J Hered 85: 455–465.

    PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Zuccotti M (1990) Robertsonian chromosome formation and fixation: the genomic scenario. In: Berry RJ, Corti M, eds. Inherited Variation and Evolution in the House Mouse. New York: Academic Press, pp. 235–255.

    Google Scholar 

  • Rieseberg LH, Van Fossen C, Desrochers AM (1995) Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375: 313–316.

    Article  CAS  Google Scholar 

  • Robinson WP, Bernasconi F, Basaran S et al. (1994) A somatic origin of homologous Robertsonian translocations and isochromosomes. Am J Hum Genet 54: 290–302.

    PubMed  CAS  Google Scholar 

  • Rubes J, Musilova P, Borkovec L, Borkovcova Z, Svecova D, Urbanova J (1996) A new Robertsonian translocation in cattle, rob(16;20). Hereditas 124: 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Kubickova S, Pagacova E et al. (2008) Phylogenomic study of spiral horned antelope by cross-species chromosome painting. Chromosome Res. doi:10.1007/s10577-008-1250-6.

  • Ruiz-Herrera A, García F, Giulotto E et al. (2005) Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet Genome Res 108: 234–247.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 7: R115.

    Article  PubMed  CAS  Google Scholar 

  • Sauvel R (1949) Distribution géographique du kou-prey (Bibos sauveli Urb.). Mammalia 13: 144–148.

    Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical In-situ hybridization. Oxford: BIOS.

    Google Scholar 

  • Shaw DD, Wilkinson P, Coates DJ (1983) Increased chromosomal mutation rate after hybridization between two subspecies of grasshoppers. Science 220: 1165–1167.

    Article  PubMed  CAS  Google Scholar 

  • Steklenev EP (1997) The characteristics of the reproductive capacity of hybrids of the bison (Bison bison L.) with the domestic cow (Bos (Bos) primigenius taurus). The reproductive capacity of hybrid females. Tsitol Genet 31: 81–91.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yamamoto Y, Amano T et al. (2000) A Robertsonian translocation, Rob(2;28), found in Vietnamese cattle. Hereditas 133: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Urbain A (1937) Le Kou Prey ou boeuf gris cambodgien. Bull Soc Zool Fr 62: 305–307.

    Google Scholar 

  • Vadhanakul N, Tansatit M, Tunwattana W (2003) Karyotype of a Thai gaur sire of Khao Kheow Open Zoo. J Thai Vet Med Assoc 54: 39–48.

    Google Scholar 

  • Van Gelder RG (1977) Mammalian hybrids and generic limits. Amercian Museum Novitates, 2635: 1–25.

    Google Scholar 

  • Vassart M, Séguéla A, Hayes H. (1995) Chromosomal evolution in gazelles. J Hered 86: 216–227.

    PubMed  CAS  Google Scholar 

  • Weber AF, Buoen LC, Yhang T, Ruth GR (1992) Prevalence of the 14/20 centric fusion chromosomal aberration in US Simmental cattle. JAVMA 200: 1216–1219.

    PubMed  CAS  Google Scholar 

  • Wharton CH (1957) An ecological study of the kouprey, Novibos sauveli (Urbain). Monograph no. 5 Manila: Institute of Science and Technology, pp. 1–107.

    Google Scholar 

  • White MJD (1978) Modes of Speciation. San Francisco: WH Freeman.

    Google Scholar 

  • Winter H, Mayr B, Schleger W, Dworak E, Krutzler J, Burger B (1984) Karyotyping, red blood cell and haemoglobin typing of the mithun (Bos frontalis), its wild ancestor and its hybrids. Res Vet Sci 36: 276–283.

    PubMed  CAS  Google Scholar 

  • Wyttenbach A, Borodin P, Hausser J (1998) Meiotic drive favors Robertsonian metacentric chromosomes in the common shrew (Sorex araneus, Insectivora, Mammalia). Cytogenet Cell Genet 83: 199–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Biopsies were done in the Phnom Tamao zoo by Norin Chai thanks to the help of Nick Marx, Charly Pignon, Yannick Roman, Roland Simon, and all the keepers of the Rescue Center. We also acknowledge Johannes A. Lenstra for bibliographic help and Aurora Ruiz-Herrera and Maud Bonato for helpful comments. V.R.I. was funded through a research grant MZE 0002716201. A.R. and A.H. were supported by funds from the MNHN, CNRS, and PPF ‘État et structure phylogénétique de la biodiversité actuelle et fossile’. A.R. gratefully acknowledges the National Research Foundation of South Africa (GUN 65079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne Ropiquet or Alexandre Hassanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ropiquet, A., Gerbault-Seureau, M., Deuve, J.L. et al. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res 16, 1107–1118 (2008). https://doi.org/10.1007/s10577-008-1262-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1262-2

Key words

Navigation