Skip to main content
Log in

Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics—cross-species chromosome painting—is limited. In this study, we used whole chromosome painting probes of the field vole Microtus agrestis to detect regions of homology in the karyotypes of eight Microtus species. For almost all investigated species, species-specific associations of conserved chromosomal segments were revealed. Analysis of data obtained here and previously published data allowed us to propose that the ancestral Microtus species had a 2n = 54 karyotype, including two associations of field vole chromosomal segments (MAG 1/17 and 2/8). Further mapping of the chromosome rearrangements onto a molecular phylogenetic tree allows the reconstruction of a karyotype evolution pathway in the Microtus genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2n :

Diploid number of chromosomes

AMiK:

Ancestral karyotype of genus Microtus

ETA:

Ellobius talpinus

FISH:

Fluorescent in situ hybridization

GTG banding:

G-banding by trypsin using Giemsa

MARA:

M. arvalis “arvalis”

MAG:

M. agrestis

MDA:

M. daghestanicus

MDO:

M. dogramacii

MGR:

M. gregalis

MGUG:

M. guentheri guentheri

MMA:

M. maximowiczii

MOE:

M. oeconomus

MRO:

M. rossiaemeridionalis

MSO:

M. socialis

MY:

Million years

NFa:

Fundamental autosomal number

References

  • Agadjanyan A, Yacenko B (1984) Phylogenetic relationships of voles from North Eurasia. In: The problem of variability and phylogeny of mammals. MSU, Moscow, pp 135–190 (Russian)

    Google Scholar 

  • Burgos M, Jimenez R, Dias de la Guardia К (1988a) XY females in Microtus cabrerae (Rodentia, Microtidae): a case of possibly Y-linked sex reversal. Cytogenet Cell Genet 49:275–277

    Article  PubMed  CAS  Google Scholar 

  • Burgos M, Jimenez R, Olmos DM (1988b) Heterogeneous heteroсhromatin and size variations in the sex chromosomes of Microtus cabrerae. Cytogenet Cell Genet 47:75–79

    Article  PubMed  CAS  Google Scholar 

  • Chaline J, Brunet-Lecomte P, Motuire S et al (1999) Anatomy of the arvicoline radiation (Rodentia): paleogeographical, paleoecological history and evolutionary data. Ann Zool Fennici 36:239–267

    Google Scholar 

  • Conroy CJ, Cook JA (1999) MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J Mamm Evol 6:221–245

    Article  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53(3):470–484

    Article  PubMed  Google Scholar 

  • Galewski T, Tilak M, Sanchez S et al (2006) The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol Biol 6:80

    Article  PubMed  CAS  Google Scholar 

  • Gamperl T (1982) Chromosomal evolution in the genus Clethrionomys. Genetica 57:193–197

    Article  Google Scholar 

  • Golenishchev FN, Sablina OV (1991) On taxonomy of Microtus (Blanfordimys) afghanus. Zoologicheskii Zhurnal 70:98–110 (Russian)

    Google Scholar 

  • Golenishchev FN, Malikov VG (2006) The “developmental conduit” of the tribe Microtini (Rodentia, Arvicolinae): systematic and evolutionary aspects. Russian J Theriol 5(1):19–26

    Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PC et al (2000) A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8:253–263

    Article  PubMed  CAS  Google Scholar 

  • Gromov IM, Polyakov IY (1992) Fauna of the USSR 3. Voles (Microtinae). Brill, Leiden

    Google Scholar 

  • Jaarola M, Martinkova N, Günduüz I et al (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33:647–663

    Article  PubMed  CAS  Google Scholar 

  • Kryštufek B, Griffiths HI, Vohralik V (1996) The status and use of Terricola Fatio, 1867 in taxonomy of Palearctic pine voles (Pitymys) (Rodentia, Arvicolinae). Bull Inst R Sci Nat Belg Biol 66:237–240

    Google Scholar 

  • Li T, Wang J, Su W et al (2006) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114:50–55

    Article  PubMed  CAS  Google Scholar 

  • Matthey R (1957) Cytologie comparee systematique et phylogenie des Microtinae (Rodentia: Muridae). Rev Suisse Zool 64:39–71

    Google Scholar 

  • Matthey R (1973) The chromosome formulae of eutherian mammals. In: Chiarelli AB, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic, London, pp 531–616

    Google Scholar 

  • Mayorov VI, Adkison LR, Vorobyeva NV et al (1996) Organization and chromosomal localization of a B1-like containing repeat of Microtus subarvalis. Mamm Genome 7:593–597

    Article  PubMed  CAS  Google Scholar 

  • Mazurok NA, Rubtsova NV, Isaenko AA et al (2001) Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Res 9:107–120

    Article  PubMed  CAS  Google Scholar 

  • Meyer MN, Radjabli SI, Bulatova NSh et al (1985) Karyological peculiarities and probable relations of common voles of the group “arvalis” (Rodentia, Cricetidae, Microtus). Zool Zh 64:417–428 (in Russian with English summary)

    Google Scholar 

  • Meyer MN, Golenishchev FN, Radjabli SI et al (1996) Voles (subgenus Microtus Schrank) of Russia and adjacent territories. Russ Acad Sci, Proc Zool Inst 232:3–320, Russian

    Google Scholar 

  • Modi WS (1987a) Phylogenetic analyses of chromosomal banding patterns among the Neartic Arvicolidae (Mammalia, Rodentia). Syst Zool 36:109–136

    Article  Google Scholar 

  • Modi WS (1987b) C-banding analysis and the evolution heterochromatin among arvicolid rodents. J Mamm 68:704–714

    Article  Google Scholar 

  • Modi WS (1993) Comparative analysis of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Cytogenet Cell Genet 62:142–148

    Article  PubMed  CAS  Google Scholar 

  • Modi WS, Serdyukova NA, Vorobieva NV, Graphodatsky AS (2003) Chromosomal localization of six repeat DNA sequences among species of Microtus (Rodentia). Chromosome Res 11:705–713

    Article  PubMed  CAS  Google Scholar 

  • Musser GG, Carleton MD (2005) Order Rodentia. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp 989–1019

    Google Scholar 

  • Orlov VN, Malygin VM (1969) Two forms of 46-chromosome common vole Microtus arvalis Pallas. Mammals (evolution, karyology, systematics, faunistics). Novosibirsk, pp 143–144 (Russian)

  • Repenning CA, Feifar O, Heinrich WD (1990) Arvicolid rodent biochronology of the northern hemisphere. In: Feifar O, Heinrich WD (eds) International symposium on the evolution, phylogeny and biostratigraphy of arvicolids (Rodentia, Mammalia). Pfiel-Verlag, Munich, pp 385–418

    Google Scholar 

  • Romanenko SA, Sitnikova NA, Serdukova NA et al (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:891–897

    Article  PubMed  CAS  Google Scholar 

  • Sablina OV, Radjabli SI, Graphodatsky AS (2006) Selected karyotypes. In: O’Brien SJ, Nash WG, Menninger JC (eds) Atlas of mammalian karyotypes. Wiley, Chichester, pp 237–239

    Google Scholar 

  • Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu EP (1998) Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 8(9):901–915

    PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • Sitnikova NA, Romanenko SA, O’Brien PCM et al (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:447–456

    Article  PubMed  CAS  Google Scholar 

  • Sperling K, Kalscheuer V, Kottusch-Geisler V et al (1990) Genetic activity of constitutive heterochromatin in mammals. Chrom Today 10:83–89

    Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Volobouev VT, Gallardo MH, Graphodatsky AS (2006) Rodents cytogenetics. In: O’Brien SJ, Nash WG, Menninger JC (eds) Atlas of mammalian karyotypes. Wiley, Chichester, pp 173–176

    Google Scholar 

  • Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  PubMed  CAS  Google Scholar 

  • Zheng S-H, Zhang Z-Q (2000) Late Miocene–Early Pleistocene micromammals from Wenwanggou of Lingtai, Gansu, China. Vertebrata Pal Asiatica 38:58–71

    Google Scholar 

Download references

Acknowledgments

This study was funded in part by research grants from MCB and SB RAS Programs, Russian Fund for Basic Research: 09-04-00851-а (A.S.G.), and Russian Federation President’s grant: MK-2241.2009.4 (S.A.R). The Cambridge Resource Centre for Comparative Genomics was supported by a grant from the Wellcome Trust (MAFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Romanenko.

Additional information

Responsible Editor: Yoichi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemskaya, N.A., Romanenko, S.A., Golenishchev, F.N. et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Res 18, 459–471 (2010). https://doi.org/10.1007/s10577-010-9124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9124-0

Keywords

Navigation