Skip to main content

Advertisement

Log in

Comparative cytomolecular analyses reveal karyotype variability related to biogeographic and species richness patterns in Bombacoideae (Malvaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Bombacoideae is one out of nine subfamilies of Malvaceae and encompasses 160 tree species. The subfamily is karyotypically characterized by small and numerous chromosomes and is traditionally known by a remarkable inter- and intraspecific chromosome number variation. We conducted a comparative cytogenetic analysis to investigate karyotype diversity and chromosome evolution within Bombacoideae. To achieve this, we performed new chromosome counts, CMA/DAPI double staining, genome size estimations, and localization of 5S and 45S rDNA by fluorescence in situ hybridization for 21 species distributed across the Bombacoideae phylogeny. We performed ancestral states reconstruction analyses to elucidate chromosome evolution and provide insights into the systematics and evolution of Bombacoideae in comparison with other Malvaceae species. Newly generated data on chromosome number on Bombacoideae revealed diploids (Ochroma (2n = 84), Cavanillesia, Pochota, Pseudobombax (2n = 88), and Pachira (2n = 92)) and polyploids (Adansonia digitata (2n = 160) and Eriotheca species (2n = ca. 194 and 2n = 276)). For most species, in situ hybridization revealed karyotype, with two pairs of 45S rDNA sites co-located with CMA+ bands, and 5S rDNA sites in only one chromosome pair. Taken together, our results provide support to the hypothesis of karyotypic stability in Bombacoideae. Only the Pachira s.l. clade displayed some variability in ploidy level, number of CMA+ bands and 45S rDNA sites, and genome size compared to other Bombacoideae clades. The Striated bark clade was characterized by comparatively small genomes and low cytomolecular variability. Karyotypic data were related to biogeographic and species richness patterns of Bombacoideae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta MC, Moscone EA, Cocucci AA (2016) Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Pl Biol (Stuttq) 18:514–526. doi:10.1111/plb.12430

    Article  CAS  Google Scholar 

  • Alverson WS, Duarte MC (2015) Hello again Pochota, farewell Bombacopsis (Malvaceae). Novon 24:115–119. doi:10.3417/2013045

    Article  Google Scholar 

  • Andel TV (2001) Floristic composition and diversity of mixed primary and secondary forests in northwest Guyana. Biodivers Conservation 10:1645–1682. doi:10.1023/A:1012069717077

    Article  Google Scholar 

  • Assis FNM, Souza BCQ, Medeiros Neto E, Pinheiro F, Silva AEB, Felix LP (2013) Karyology of the genus Epidendrum (Orchidaceae: Laeliinae) with emphasis on subgenus Amphiglottium and chromosome number variability in Epidendrum secundum. Bot J Linn Soc 172:329–344. doi:10.1111/boj.12045

    Article  Google Scholar 

  • Baker HG, Baker I (1968) Chromosome numbers in the Bombacacaeae. Bot Gaz 129:294–296

    Article  Google Scholar 

  • Baniaga AE, Arrigo N, Barker MS (2016) The small nuclear genomes of Selaginella are associated with a low rate of genome size evolution. Genome Biol Evol 8:1516–1525. doi:10.1093/gbe/evw091

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotechnic Histochem 85:115–125. doi:10.1080/10520290903149596

    Article  CAS  Google Scholar 

  • Baum DA, Oginuma K (1994) A review of chromosome numbers in Bombacaceae with new counts for Adansonia. Taxon 43:11–20. doi:10.2307/1223456

    Article  Google Scholar 

  • Bawa KS (1973) Chromosome number of tree species of lowland tropical community. J Arnold Arbor 54:422–434. doi:10.5962/bhl.part.4828

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec 2012). Available at: http://www.kew.org/cvalues/. Accessed 1 Feb 2017

  • Carvalho-Sobrinho JG, Alverson WS, Alcantara S, Queiroz LP, Mota AC, Baum DA (2016) Revisiting the phylogeny of Bombacoideae (Malvaceae): novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses. Molec Phylogen Evol 101:56–74. doi:10.1016/j.ympev.2016.05.006

    Article  Google Scholar 

  • Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, Oliveira G, Dobrovolski R, Terribile LC (2013) Stability of Brazilian Seasonally Dry Forests under climate change: inferences for long-term conservation. Amer J Pl Sci 4:792–805. doi:10.4236/ajps.2013.44098

    Article  Google Scholar 

  • Cristobal CL (1967) Cromosomas de Malvales. Kurtziana 4:139–142

    Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot (Oxford) 82(Suppl 1):17–26. doi:10.1093/oxfordjournals.aob.a010312

    Article  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. doi:10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. ellioti) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Heredity 86:289–296

    Article  Google Scholar 

  • Duarte MC, Esteves GL, Salatino MLF, Walsh KC, Baum DA (2011) Phylogenetic analyses of Eriotheca and related genera (Bombacoideae, Malvaceae). Syst Bot 36:690–701. doi:10.1600/036364411X583655

    Article  Google Scholar 

  • Escudero M, Hipp AL, Luceño M (2010) Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). Molec Phylogen Evol 57(1):353–363. doi:10.1016/j.ympev.2010.07.009

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Amar Naturalist 125:1–15

    Article  Google Scholar 

  • Ferreira LV, Prance GT (1998) Species richness and floristic composition in four hectares in the Jaú National Park in upland forests in Central Amazonia. Biodivers Conservation 7:1349–1364. doi:10.1023/A:1008899900654

    Article  Google Scholar 

  • Figueredo A, Oliveira AWL, Carvalho-Sobrinho JG, Souza G (2016) Karyotypic stability in the paleopolyploid genus Ceiba Mill. (Bombacoideae, Malvaceae). Brazil J Bot 39:1087–1093. doi:10.1007/s40415-016-0296-5

    Article  Google Scholar 

  • Fishman L, Willis JH, Wu CA, Lee Y-W (2013) Comparative linkage maps suggest that fission, not polyploidy, underlies near-doubling of chromosome number within monkey flowers (Mimulus; Phrymaceae). Heredity 112:562–568. doi:10.1038/hdy.2013.143

    Article  Google Scholar 

  • Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308

    Article  Google Scholar 

  • Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18S–5.8S–25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive sequences. Theor Appl Genet 91:928–935. doi:10.1007/BF00223902

    CAS  PubMed  Google Scholar 

  • GBIF (2013) Global biodiversity information facility (GBIF) website. Available at: http://www.gbif.org. Accessed 10 Nov 2016

  • Gibbs PE, Semir J (2003) A taxonomic revision of the genus Ceiba Mill. (Bombacaceae). Anales Jard Bot Madrid 60:259–300

    Google Scholar 

  • Gibbs PE, Semir J, Cruz ND (1988) A proposal to unite the genera Chorisia Kunth and Ceiba Miller (Bombacaceae). Notes Roy Bot Gard Edinburgh 45:125–136

    Google Scholar 

  • Gill BS, Bir SS, Singhal VK (1979) Reports. In: Löve A (ed) IOPB chromosome number reports LXV. Taxon 28:627–637

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molec Biol Evol 31:1914–1922. doi:10.1093/molbev/msu122

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Ehrendorfer F (1988) Karyological approaches to plant taxonomy. Atlas Sci 1:289–297

    Google Scholar 

  • Guerra M (2012) Cytotaxonomy: the end of childhood. Pl Biosyst 146:703–710. doi:10.1080/11263504.2012.717973

    Google Scholar 

  • Harpke D, Meng S, Rutten T, Kerndorff H, Blattner FR (2013) Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Molec Phylogen Evol 66:617–627. doi:10.1016/j.ympev.2012.10.007

    Article  Google Scholar 

  • Heyn ANJ (1936) Cytologische onderzoekingen aan enkcle tropische cultuurgewassen em de beteekenis van dergelijke onderzoekingen voor de plantenveredeling. Landbouw 12:11–42

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annual Rev Ecol Evol Syst 38:847–876. doi:10.1146/annurev.ecolsys.38.091206.095504

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663. doi:10.1111/j.1095-8312.2004.00349.x

    Article  Google Scholar 

  • Linares-Palomino RL, Alvarez SIP (2005) Tree community patterns in seasonally dry tropical forests in the Cerros de Amotape Cordillera, Tumbes, Peru. Forest Ecol Managem 209:261–272

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot (Oxford) 100:875–888. doi:10.1093/aob/mcm152

    Article  CAS  Google Scholar 

  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity: physical structure, behaviour and evolution of plant genomes, vol 2. Springer, Berlin, pp 137–147

    Chapter  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org. Accessed 1 Feb 2017

  • Mangenot S, Mangenot G (1962) Enquete sur les nombres chromosomiques dans une collection d’especes tropicales. Bull Soc Bot France 25:411–447. doi:10.1080/00378941.1962.10838117

    Article  Google Scholar 

  • Marinho RC, Mendes-Rodrigues C, Balao F, Ortiz PL, Yamagishi-Costa J, Bonetti AM, Oliveira APE (2014) Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l.. Amer J Bot 101:1456–1465. doi:10.3732/ajb.1400248

    Article  Google Scholar 

  • Mendes-Rodrigues C, Carmo-Oliveira R, Talavera S, Artista M, Ortiz PL, Oliveira PE (2005) Polyembryony and apomixis in Eriotheca pubescens (Malvaceae–Bombacoideae). Pl Biol (Stuttgart) 7:533–540. doi:10.1055/s-2005-865852

    Article  CAS  Google Scholar 

  • Miège J (1974) Etude du genre Adansonia L. II. Caryologie et blastogenèse. Candollea 29:457–475

    Google Scholar 

  • Miège J, Burdet H (1968) Ètude du genre Adansonia L. I. Caryologie. Candollea 23:59–66

    Google Scholar 

  • Mota L, Torices R, Loureiro J (2016) The evolution of haploid chromosome numbers in the sunflower family. Genome Biol Evol 8:3516–3528. doi:10.1093/gbe/evw251

    Article  PubMed  PubMed Central  Google Scholar 

  • Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Crollius HR, Salse J (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16:262–279. doi:10.1186/s13059-015-0814-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Oginuma K, Alverson WS, Baum DA (1999) A cytological study of three genera of neotropical Bombacaceae (clades Bombacoideae and Malvoideae, Malvatheca). Acta Phytotax Geobot 50:173–178

    Google Scholar 

  • Ohri D, Bhargava A, Chatterjee A (2004) Nuclear DNA amounts in 112 species of tropical hardwoods—new estimates. Pl Biol (Stuttgart) 6:555–561. doi:10.1055/s-2004-821235

    Article  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    Article  CAS  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884. doi:10.1038/44766

    Article  CAS  PubMed  Google Scholar 

  • Paradis E (2012) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201:1484–1497. doi:10.1111/nph.12617

    Article  CAS  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from Seasonally Dry Tropical Forests. Annual Rev Ecol Evol Syst 40:437–457. doi:10.1146/annurev.ecolsys.110308.120327

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256. doi:10.1093/molbev/msn083

    Article  CAS  PubMed  Google Scholar 

  • Puttick MN, Clark J, Donoghue PCJ (2016) Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proc Biol Sci 282:2015–2289. doi:10.1098/rspb.2015.2289

    Google Scholar 

  • QGIS Development Team (2014) QGIS software website. Available at: http://www.qgis.org/en/site. Accessed 10 Nov 2016

  • R Development Core Team (2011) R: a language and environment for statistical computing, version 3.0.1. R Foundation for Statistical Computing, Vienna

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501. doi:10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Rev Ecol Syst 33:589–639. doi:10.1146/annurev.ecolsys.33.010802.150437

    Article  Google Scholar 

  • Raven PH (1975) The bases of Angiosperm phylogeny: cytology. Ann Missouri Bot Gard 62:724–764. doi:10.2307/2395272

    Article  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Meth Ecol Evol 3:217–223. doi:10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The chromosome counts database (CCDB)—a community resource of plant chromosome numbers. New Phytol 206:19–26. doi:10.1111/nph.13191

    Article  PubMed  Google Scholar 

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225. doi:10.1186/1471-2148-12-225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. doi:10.1159/000440930

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Sarkar AK, Datta R, Raychodhury M, Das S (1975) In: Löve A (ed) IOPB chromosome number reports L. Taxon 24:677–678

  • Singhal VK, Gill BS (1984) SOCGI plant chromosome number reports II. J Cytol Genet 19:115–117

    Google Scholar 

  • Soltis OS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Nat Acad Sci USA 97:7051–7057. doi:10.1073/pnas.97.13.7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348. doi:10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  • Sousa A, Cusimano N, Renner SS (2014) Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Ann Bot (Oxford) 113:669–680. doi:10.1093/aob/mct302

    Article  CAS  Google Scholar 

  • Swofford, DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0b10. Sinauer, Sunderland, Massachusetts

  • Wanzenböck EM, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Pl J 11:1007–1016

    Article  PubMed  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288. doi:10.1111/j.1466-8238.2010.00596.x

    Article  Google Scholar 

  • Zhan SH, Drori M, Goldberg EE, Otto SP, Mayrose I (2016) Phylogenetic evidence cladogenetic polyploidization in land plants. Amer J Bot 103:1–7. doi:10.3732/ajb.1600108

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE-APQ-2008-2.02/12) for financial support and a grant to L. C. by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Authors’ contributions

AO collected and analyzed the data for the work and drafted (partially) the work. JCS collected plant material, interpreted the data for the work and wrote the manuscript. LC collected and analyzed the data for the work, and wrote the manuscript. GS was involved in conception and design of the work, analysis and interpretation of data for work, and writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Souza.

Additional information

Handling editor: Jorg Fuchs.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Karyotypic and molecular information on species of Malvaceae used in the study.

Online Resource 2. Previous chromosome counts for Bombacoideae.

Online Resource 3. Ancestral state reconstruction for chromosome number in Bombacoideae

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L., Oliveira, Á., Carvalho-Sobrinho, J. et al. Comparative cytomolecular analyses reveal karyotype variability related to biogeographic and species richness patterns in Bombacoideae (Malvaceae). Plant Syst Evol 303, 1131–1144 (2017). https://doi.org/10.1007/s00606-017-1427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1427-6

Keywords

Navigation