Skip to main content
Log in

The Orally Active Noncompetitive AMPAR Antagonist Perampanel Attenuates Focal Cerebral Ischemia Injury in Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inhibition of ionotropic glutamate receptors (iGluRs) is a potential target of therapy for ischemic stroke. Perampanel is a potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist with good oral bioavailability and favorable pharmacokinetic properties. Here, we investigated the potential protective effects of perampanel against focal cerebral ischemia in a middle cerebral artery occlusion (MCAO) model in rats. Oral administration with perampanel significantly reduced MCAO-induced brain edema, brain infarct volume, and neuronal apoptosis. These protective effects were associated with improved functional outcomes, as measured by foot-fault test, adhesive removal test, and modified neurological severity score (mNSS) test. Importantly, perampanel was effective even when the administration was delayed to 1 h after reperfusion. The results of enzyme-linked immunosorbent assay (ELISA) showed that perampanel significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, whereas it increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1 after MCAO. In addition, perampanel treatment markedly decreased the expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), and also inhibited nitric oxide (NO) generation in MCAO-injured rats at 24 and 72 h after reperfusion. In conclusion, this study demonstrated that the orally active AMPAR antagonist perampanel protects against experimental ischemic stroke via regulating inflammatory cytokines and NOS pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appireddy RM, Demchuk AM, Goyal M, Menon BK, Eesa M, Choi P, Hill MD (2015) Endovascular therapy for ischemic stroke. J Clin Neurol 11(1):1–8. doi:10.3988/jcn.2015.11.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668. doi:10.1007/s00018-003-3319-x

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35(Pt 5):1119–1121. doi:10.1042/BST0351119

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2006) Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans 34(Pt 5):953–956. doi:10.1042/BST0340953

    Article  CAS  PubMed  Google Scholar 

  • Ceolin L, Bortolotto ZA, Bannister N, Collingridge GL, Lodge D, Volianskis A (2012) A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. Neurochem Int 61(4):517–522. doi:10.1016/j.neuint.2012.02.035

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Cao L, Dong W, Luo P, Liu W, Qu Y, Fei Z (2012a) Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem Res 37(5):983–990. doi:10.1007/s11064-011-0691-z

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhang L, Qu Y, Huo K, Jiang X, Fei Z (2012b) The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 29(4):630–636. doi:10.3892/ijmm.2011.870

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS (2014) Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 34(29):9621–9643. doi:10.1523/JNEUROSCI.3991-13.2014

    Article  PubMed  Google Scholar 

  • Chen T, Dai SH, Jiang ZQ, Luo P, Jiang XF, Fei Z, Gui SB, Qi YL (2016) The AMPAR antagonist perampanel attenuates traumatic brain injury through anti-oxidative and anti-inflammatory activity. Cell Mol Neurobiol. doi:10.1007/s10571-016-0341-8

    Google Scholar 

  • del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10(1):95–112

    Article  PubMed  Google Scholar 

  • Dias RB, Ribeiro JA, Sebastiao AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22(2):276–291. doi:10.1002/hipo.20894

    Article  CAS  PubMed  Google Scholar 

  • Erdo F, Berzsenyi P, Nemet L, Andrasi F (2006) Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study. Brain Res Bull 68(4):269–276. doi:10.1016/j.brainresbull.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  • Frenkel D, Huang Z, Maron R, Koldzic DN, Hancock WW, Moskowitz MA, Weiner HL (2003) Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J Immunol 171(12):6549–6555

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3):363–389. doi:10.1016/j.neuropharm.2007.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton TA, Ohmori Y, Tebo J (2002) Regulation of chemokine expression by antiinflammatory cytokines. Immunol Res 25(3):229–245. doi:10.1385/IR:25:3:229

    Article  CAS  PubMed  Google Scholar 

  • Hanada T (2014) The discovery and development of perampanel for the treatment of epilepsy. Expert Opin Drug Discov 9(4):449–458. doi:10.1517/17460441.2014.891580

    Article  CAS  PubMed  Google Scholar 

  • Hanada T, Hashizume Y, Tokuhara N, Takenaka O, Kohmura N, Ogasawara A, Hatakeyama S, Ohgoh M, Ueno M, Nishizawa Y (2011) Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52(7):1331–1340. doi:10.1111/j.1528-1167.2011.03109.x

    Article  CAS  PubMed  Google Scholar 

  • Krauss GL, Bar M, Biton V, Klapper JA, Rektor I, Vaiciene-Magistris N, Squillacote D, Kumar D (2012) Tolerability and safety of perampanel: two randomized dose-escalation studies. Acta Neurol Scand 125(1):8–15. doi:10.1111/j.1600-0404.2011.01588.x

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ, Laurenza A, FitzGibbon H, Gidal BE (2015) Analysis of pooled phase III trials of adjunctive perampanel for epilepsy: impact of mechanism of action and pharmacokinetics on clinical outcomes. Epilepsy Res 117:117–124. doi:10.1016/j.eplepsyres.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  • Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698. doi:10.1038/jcbfm.2012.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langan YM, Lucas R, Jewell H, Toublanc N, Schaefer H, Sander JW, Patsalos PN (2003) Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 44(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Licinio J, Prolo P, McCann SM, Wong ML (1999) Brain iNOS: current understanding and clinical implications. Mol Med Today 5(5):225–232. doi:10.1016/S1357-4310(99)01453-7

    Article  CAS  PubMed  Google Scholar 

  • Lin MP, Sanossian N (2015) Reperfusion therapy in the acute management of ischemic stroke. Cardiol Clin 33(1):99–109. doi:10.1016/j.ccl.2014.09.009

    Article  PubMed  Google Scholar 

  • Liu PK, Robertson CS, Valadka A (2002) The association between neuronal nitric oxide synthase and neuronal sensitivity in the brain after brain injury. Ann N Y Acad Sci 962:226–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv JM, Guo XM, Chen B, Lei Q, Pan YJ, Yang Q (2015) The noncompetitive AMPAR antagonist perampanel abrogates brain endothelial cell permeability in response to ischemia: involvement of claudin-5. Cell Mol Neurobiol. doi:10.1007/s10571-015-0257-8

    Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. doi:10.1186/1742-2094-5-45

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon DK, Zahed C (2009) Prediction of outcome in severe traumatic brain injury. Curr Opin Crit Care 15(5):437–441. doi:10.1097/MCC.0b013e3283307a26

    Article  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360. doi:10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  • Ning R, Chopp M, Zacharek A, Yan T, Zhang C, Roberts C, Lu M, Chen J (2014) Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats. Neuroscience 257:76–85. doi:10.1016/j.neuroscience.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477. doi:10.1002/ana.20741

    Article  PubMed  Google Scholar 

  • Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H, Kamouchi M, Kitazono T, Iida M (2005) Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111(7):913–919. doi:10.1161/01.CIR.0000155622.68580.DC

    Article  CAS  PubMed  Google Scholar 

  • Pandya RS, Mao L, Zhou H, Zhou S, Zeng J, Popp AJ, Wang X (2011) Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent Nerv Syst Agents Med Chem 11(2):81–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY (2001) Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke 32(2):544–552

    Article  CAS  PubMed  Google Scholar 

  • Patsalos PN (2015) The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56(1):12–27. doi:10.1111/epi.12865

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Hanada T (2013) Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol Scand 127(Suppl 197):19–24. doi:10.1111/ane.12100

    Article  CAS  Google Scholar 

  • Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247(4942):571–574

    Article  CAS  PubMed  Google Scholar 

  • Simi A, Tsakiri N, Wang P, Rothwell NJ (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans 35(Pt 5):1122–1126. doi:10.1042/BST0351122

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Meldrum BS (1993) Cerebroprotective effect of a non-N-methyl-D-aspartate antagonist, NBQX, after focal ischaemia in the rat. Funct Neurol 8(1):43–48

    CAS  PubMed  Google Scholar 

  • Traynor K (2012) Perampanel approved for epilepsy. Am J Health Syst Pharm 69(23):2024. doi:10.2146/news120080

    Google Scholar 

  • Vannucchi MG, Bizzoco E, Corsani L, Gianfriddo M, Pedata F, Faussone-Pellegrini MS (2007) Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Res 1132(1):218–227. doi:10.1016/j.brainres.2006.11.029

    Article  CAS  PubMed  Google Scholar 

  • Yung HW, Bal-Price AK, Brown GC, Tolkovsky AM (2004) Nitric oxide-induced cell death of cerebrocortical murine astrocytes is mediated through p53- and Bax-dependent pathways. J Neurochem 89(4):812–821. doi:10.1111/j.1471-4159.2004.02395.x

    Article  CAS  PubMed  Google Scholar 

  • Zaharchuk G, Hara H, Huang PL, Fishman MC, Moskowitz MA, Jenkins BG, Rosen BR (1997) Neuronal nitric oxide synthase mutant mice show smaller infarcts and attenuated apparent diffusion coefficient changes in the peri-infarct zone during focal cerebral ischemia. Magn Reson Med 37(2):170–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang FG, Meng C, Tian SY, Wang YX, Zhao W, Chen J, Zhang XS, Liang Y, Zhang SD, Xing YJ (2012) Inhibition of sevoflurane postconditioning against cerebral ischemia reperfusion-induced oxidative injury in rats. Molecules 17(1):341–354. doi:10.3390/molecules17010341

    CAS  Google Scholar 

  • Zhang BJ, Men XJ, Lu ZQ, Li HY, Qiu W, Hu XQ (2013) Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J 126(12):2354–2360

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Jing-Ru Zhou.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, HX., Wang, JZ., Wang, DL. et al. The Orally Active Noncompetitive AMPAR Antagonist Perampanel Attenuates Focal Cerebral Ischemia Injury in Rats. Cell Mol Neurobiol 38, 459–466 (2018). https://doi.org/10.1007/s10571-017-0489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0489-x

Keywords

Navigation