Skip to main content

Advertisement

Log in

Kinetics of thermal degradation of wood biomass

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Pyrolysis kinetics of a hardwood representative, beech (Fagus sylvatica), was investigated by two different kinetic approaches: model-free isoconversional method and model-fitting method. The model-free isoconversional method was used for the determination of apparent kinetic parameters, i.e. the activation energy and pre-exponential factor. The model fitting method was used for the optimization of kinetic parameters of the reaction pathways of three selected reaction mechanisms: one-step, two-step, and three-step one. In both approaches, thermo-gravimetric data were used at five heating rates: 2°C min−1, 5°C min−1, 10°C min−1, 15°C min−1 and 20°C min−1. As the most suitable mechanism, the three-step mechanism containing the intermediate degradation step was chosen. This selection was supported by experimental results from the 13C NMR analysis of solid residues prepared at the key temperatures within the range of 230–500°C. The progress of mass fraction values of each component in this mechanism was simulated. Conclusions from the simulation were confronted with experimental results from the 13C NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antal, M. J., Jr., & Várhegyi, G. (1995). Cellulose pyrolysis kinetics: The current state of knowledge. Industrial & Engineering Chemistry Research, 34, 703–717. DOI: 10.1021/ie00042a001.

    Article  CAS  Google Scholar 

  • Antal, M. J., Jr., Várhegyi, G., & Jakab, E. (1998). Cellulose pyrolysis kinetics: Revisited. Industrial & Engineering Chemistry Research, 37, 1267–1275. DOI: 10.1021/ie970144v.

    Article  CAS  Google Scholar 

  • Arseneau, D. F. (1971). Competitive reactions in the thermal decomposition of cellulose. Canadian Journal of Chemistry, 49, 632–638. DOI: 10.1139/v71-101.

    Article  CAS  Google Scholar 

  • Banyasz, J. L., Li, S., Lyons-Hart, J., & Shafer, K. H. (2001a). Cellulose pyrolysis: The kinetics of hydroxyacetaldehyde evolution. Journal of Analytical and Applied Pyrolysis, 57, 223–248. DOI: 10.1016/s0165-2370(00)00135-2.

    Article  CAS  Google Scholar 

  • Banyasz, J. L., Li, S., Lyons-Hart, J., & Shafer, K. H. (2001b). Gas evolution and the mechanism of cellulose pyrolysis. Fuel, 80, 1757–1763. DOI: 10.1016/s0016-2361(01)00060-6.

    Article  CAS  Google Scholar 

  • Bardet, M., Emsley, L., & Vincendon, M. (1997). Twodimensional spin-exchange solid-state NMR studies of 13Cenriched wood. Solid State Nuclear Magnetic Resonance, 8, 25–32. DOI: 10.1016/s0926-2040(96)01273-8.

    Article  CAS  Google Scholar 

  • Bradburry, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23, 3271–3280. DOI: 10.1002/app.1979.070231112.

    Article  Google Scholar 

  • Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28, 386–396. DOI: 10.1002/ep.10378.

    Article  CAS  Google Scholar 

  • Broido, A., & Weinstein, M. (1972). Low temperature isothermal pyrolysis of cellulose. In Thermal analysis (pp. 285–296). DOI: 10.1007/978-3-0348-5775-825.

    Chapter  Google Scholar 

  • Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Málek, J., & Mitsuhashi, T. (2000). Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta, 355, 125–143. DOI: 10.1016/s0040-6031(00)00443-3.

    Article  CAS  Google Scholar 

  • Budrugeac, P. (2002). Differential non-linear isoconversional procedure for evaluating the activation energy of nonisothermal reactions. Journal of Thermal Analysis and Calorimetry, 68, 131–139. DOI: 10.1023/a:1014932903582.

    Article  CAS  Google Scholar 

  • Burnham, A. K., & Dinh, L. N. (2007). A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. Journal of Thermal Analysis and Calorimetry, 89, 479–490. DOI: 10.1007/s10973-006-8486-1.

    Article  CAS  Google Scholar 

  • Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34, 47–90. DOI: 10.1016/j.pecs.2006.12.001.

    Article  Google Scholar 

  • Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis, 62, 331–349. DOI: 10.1016/s0165-2370(01)00129-2.

    Article  CAS  Google Scholar 

  • Flynn, J. H. (1997). The ‘temperature integral’ — its use and abuse. Thermochimica Acta, 300, 83–92. DOI: 10.1016/s0040-6031(97)00046-4.

    Article  CAS  Google Scholar 

  • Friedman, H. L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183–195. DOI: 10.1002/polc.5070060121.

    Article  Google Scholar 

  • Gašparovič, L., Koreňová, Z., & Jelemenský, Ľ. (2010). Kinetic study of wood chips decomposition by TGA. Chemical Papers, 64, 174–181. DOI: 10.2478/s11696-009-0109-4.

    Article  Google Scholar 

  • Geng, Z. F., Zhang, M. H., & Yu, Y. Z. (2011). Theoretical investigation on pyrolysis mechanism of glycerol. Fuel, 93, 92–98. DOI: 10.1016/j.fuel.2011.08.021.

    Article  Google Scholar 

  • Gil, A. M., & Neto, C. P. (1999). Solid-state NMR studies of wood and other lignocellulosic materials. Annual Reports on NMR Spectroscopy, 37, 75–117. DOI: 10.1016/s0066-4103(08)60014-9.

    Article  CAS  Google Scholar 

  • Haydary, J., & Susa, D. (2013). Kinetics of thermal decomposition of aseptic packages. Chemical Papers, 67, 1514–1520. DOI: 10.2478/s11696-013-0319-7.

    Article  CAS  Google Scholar 

  • Hoekstra, E., Van Swaaij, W. P. M., Kersten, S. R. A., & Hogendoorn, K. J. A. (2012). Fast pyrolysis in a novel wiremesh reactor: Decomposition of pine wood and model compounds. Chemical Engineering Journal, 187, 172–184. DOI: 10.1016/j.cej.2012.01.118.

    Article  CAS  Google Scholar 

  • Hosoya, T., Kawamoto, H., & Saka, S. (2008). Different pyrolytic pathways of levoglucosan in vapor- and liquid/solidphases. Journal of Analytical and Applied Pyrolysis, 83, 64–70. DOI: 10.1016/j.jaap.2008.06.008.

    Article  CAS  Google Scholar 

  • Howell, B. A. (2006). Utility of kinetic analysis in the determination of reaction mechanism. Journal of Thermal Analysis and Calorimetry, 85, 165–167. DOI: 10.1007/s10973-005-7484-z.

    Article  CAS  Google Scholar 

  • Kilzer, F. J., & Broido, A. (1965). Speculation on the nature of cellulose pyrolysis. Pyrodynamics, 2, 151–163.

    CAS  Google Scholar 

  • Koufopanos, C. A., Lucchesi, A., & Maschio, G. (1989). Kinetic modelling of the pyrolysis of biomass and biomass components. The Canadian Journal of Chemical Engineering, 67, 75–84. DOI: 10.1002/cjce.5450670111.

    Article  CAS  Google Scholar 

  • Lédé, J. (2012). Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose. Journal of Analytical and Applied Pyrolysis, 94, 17–32. DOI: 10.1016/j.jaap.2011.12.019.

    Article  Google Scholar 

  • Li, S., Lyons-Hart, J., Banyasz, J. L., & Shafer, K. H. (2001). Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis. Fuel, 80, 1809–1817. DOI: 10.1016/s0016-2361(01)00064-3.

    Article  CAS  Google Scholar 

  • Mamleev, V., Bourbigot, S., & Yvon, J. (2007). Kinetic analysis of the thermal decomposition of cellulose: The change of the rate limitation. Journal of Analytical and Applied Pyrolysis, 80, 141–150. DOI: 10.1016/j.jaap.2007.01.012.

    Article  CAS  Google Scholar 

  • Maunu, S. L. (2002). NMR studies of wood and wood products. Progress in Nuclear Magnetic Resonance Spectroscopy, 40, 151–174. DOI: 10.1016/s0079-6565(01)00041-3.

    Article  CAS  Google Scholar 

  • Melkior, T., Jacob, S., Gerbaud, G., Hediger, S., Le Pape, L., Bonnefois, L., & Bardet, M. (2012). NMR analysis of the transformation of wood constituents by torrefaction. Fuel, 92, 271–280. DOI: 10.1016/j.fuel.2011.06.042.

    Article  CAS  Google Scholar 

  • Miyanami, K, Fan, L. S., Fan, L. T., & Walawender, W. P. (1977). A mathematical model for pyrolysis of a solid particle — effects of the heat of reaction. The Canadian Journal of Chemical Engineering, 55, 317–325. DOI: 10.1002/cjce.5450550314.

    Article  CAS  Google Scholar 

  • Opfermann, J. (2000). Kinetic analysis using multivariate nonlinear regression. I. Basic concepts. Journal of Thermal Analysis and Calorimetry, 60, 641–658. DOI: 10.1023/a:1010167 626551.

    Article  CAS  Google Scholar 

  • Paine, J. B., Pithawalla, Y. B., Naworal, J. D., & Thomas, C. E., Jr. (2007). Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 1: The pyrolysis of glycerin: Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis. Journal of Analytical and Applied Pyrolysis, 80, 297–311. DOI: 10.1016/j.jaap.2007.03.007.

    Article  CAS  Google Scholar 

  • Prakash, N., & Karunanithi, T. (2008). Kinetic modeling in biomass pyrolysis. A review. Journal of Applied Sciences Research, 4, 1627–1636.

    CAS  Google Scholar 

  • Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability, 95, 733–739. DOI: 10.1016/j.polymdegradstab.2010.02.017.

    Article  Google Scholar 

  • Shafizadeh, F., & Chin, P. P. S. (1977). Thermal deterioration of wood. ACS Symposium Series, 43, 57–81. DOI: 10.1021/bk-1977-0043.ch005.

    Article  CAS  Google Scholar 

  • Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3, 283–305. DOI: 10.1016/0165-2370(82)80017-x.

    Article  CAS  Google Scholar 

  • Shen, D. K., & Gu, S. (2010). Corrigendum to “The mechanism for thermal decomposition of cellulose and its main products” [Biores. Technol. 100 (2009) 6496–6504]. Bioresource Technology, 101, 6879. DOI: 10.1016/j.biortech.2010.04.002.

    Article  CAS  Google Scholar 

  • Thurner, F., & Mann, U. (1981). Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 20, 482–488. DOI: 10.1021/i200014a015.

    Article  CAS  Google Scholar 

  • Várhegyi, G., Jakab, E., & Antal, M. J., Jr. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuels, 8, 1345–1352. DOI: 10.1021/ef00048a025.

    Article  Google Scholar 

  • Várhegyi, G., Antal, M. J., Jr., Jakab, E., & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42, 73–87. DOI: 10.1016/s0165-2370(96)00971-0.

    Article  Google Scholar 

  • Vyazovkin, S., & Dollimore, D. (1996). Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. Journal of Chemical Information and Modeling, 36, 42–45. DOI: 10.1021/ci950062m.

    Article  CAS  Google Scholar 

  • Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 1–19. DOI: 10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  • White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1–33. DOI: 10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  • Wichman, I. S., & Atreya, A. (1987). A simplified model for the pyrolysis of charring materials. Combustion and Flame, 68, 231–247. DOI: 10.1016/0010-2180(87)90002-2.

    Article  CAS  Google Scholar 

  • Wu, S. L., Shen, D. K., Hu, J., Xiao, R., & Zhang, H. Y. (2013). TG-FTIR and Py-GC-MS analysis of a model compound of cellulose — glyceraldehyde. Journal of Analytical and Applied Pyrolysis, 101, 79–85. DOI: 10.1016/j.jaap.2013.02.009.

    Article  CAS  Google Scholar 

  • Yoon, H. C., Pozivil, P., & Steinfeld, A. (2012). Thermogravimetric pyrolysis and gasification of lignocellulosic biomass and kinetic summative law for parallel reactions with cellulose, xylan and lignin. Energy & Fuels, 26, 357–364. DOI: 10.1021/ef201281n.

    Article  CAS  Google Scholar 

  • Zheng, A. Q., Zhao, Z. L., Chang, S., Huang, Z., Wang, X. B., He, F., & Li, H. B. (2013). Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresource Technology, 128, 370–377. DOI: 10.1016/j.biortech.2012.10.067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľudovít Jelemenský.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrablay, I., Jelemenský, Ľ. Kinetics of thermal degradation of wood biomass. Chem. Pap. 68, 1725–1738 (2014). https://doi.org/10.2478/s11696-014-0622-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0622-y

Keywords

Navigation