Skip to main content
Log in

Model-free kinetics

Staying free of multiplying entities without necessity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper presents the model-free kinetic approach in the context of the traditional kinetic description based on the kinetic triplet, A, E, and f(α) or g(α). A physical meaning and interpretability of the triplet are considered. It is argued that the experimental values of f(α) or g(α) and A are unlikely to be interpretable in the respective terms of the reaction mechanism and of the vibrational frequency of the activated complex. The traditional kinetic description needs these values for making kinetic predictions. Interpretations are most readily accomplished for the experimental value of E that generally is a function of the activation energies of the individual steps of a condensed phase process. Model-free kinetic analysis produces a dependence of E on α that is sufficient for accomplishing theoretical interpretations and kinetic predictions. Although model-free description does not need the values of A and f(α) or g(α), the methods of their estimating are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AK Galwey ME Brown (1999) Thermal Decomposition of Ionic Solids Elsevier Amsterdam

    Google Scholar 

  2. S Glasstone KJ Laidler H Eyring (1941) The Theory of Rate Processes McGrow-Hill New York, London

    Google Scholar 

  3. AW Coats JP Redfern (1964) Nature 201 68 Occurrence Handle1:CAS:528:DyaF2cXjsFWltA%3D%3D

    CAS  Google Scholar 

  4. S Vyazovkin CA Wight (1999) Thermochim. Acta 340/341 53 Occurrence Handle10.1016/S0040-6031(99)00253-1

    Article  Google Scholar 

  5. M Maciejewski (2000) Thermochim. Acta 355 145 Occurrence Handle10.1016/S0040-6031(00)00444-5 Occurrence Handle1:CAS:528:DC%2BD3cXktVSjsro%3D

    Article  CAS  Google Scholar 

  6. AK Burnham (2000) Thermochim. Acta 355 165 Occurrence Handle10.1016/S0040-6031(00)00446-9 Occurrence Handle1:CAS:528:DC%2BD3cXktVSjsrg%3D

    Article  CAS  Google Scholar 

  7. ME Brown M Maciejewski S Vyazovkin R Nomen J Sempere A Burnham J Opfermann R Strey HL Anderson A Kemmler R Keuleers J Janssens HO Desseyn C-R Li TB Tang B Roduit T Mitsuhashi (2000) Thermochim. Acta 355 125 Occurrence Handle10.1016/S0040-6031(00)00443-3 Occurrence Handle1:CAS:528:DC%2BD3cXktVSjsr0%3D

    Article  CAS  Google Scholar 

  8. S Vyazovkin CA Wight (1998) Int. Rev. Phys. Chem. 17 407 Occurrence Handle1:CAS:528:DyaK1cXls1ektr8%3D

    CAS  Google Scholar 

  9. S Vyazovkin JS Clawson CA Wight (2001) Chem. Mater. 13 960 Occurrence Handle10.1021/cm000708c Occurrence Handle1:CAS:528:DC%2BD3MXhtVWlsrY%3D

    Article  CAS  Google Scholar 

  10. DA Frank-Kamenetskii (1969) Diffusion and Heat Transfer in Chemical Kinetics EditionNumber2 Plenum Press New York, London

    Google Scholar 

  11. TB Brill PE Gongwer GK Williams (1994) J. Phys. Chem. 98 12242 Occurrence Handle10.1021/j100098a020 Occurrence Handle1:CAS:528:DyaK2cXmvVeisLg%3D

    Article  CAS  Google Scholar 

  12. H Flynn LA Wall (1966) J. Res. Nat. Bur. Standards 70A 487

    Google Scholar 

  13. T Ozawa (1965) Bull. Chem. Soc. 38 1881 Occurrence Handle1:CAS:528:DyaF28XjtVyisQ%3D%3D

    CAS  Google Scholar 

  14. S Vyazovkin (2001) J. Comput. Chem. 22 178 Occurrence Handle10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-# Occurrence Handle1:CAS:528:DC%2BD3MXotFOg

    Article  CAS  Google Scholar 

  15. S Vyazovkin (2000) New J. Chem. 24 913 Occurrence Handle10.1039/b004279j Occurrence Handle1:CAS:528:DC%2BD3cXnslShs7s%3D

    Article  CAS  Google Scholar 

  16. S Vyazovkin (2000) Int. Rev. Phys. Chem. 19 45 Occurrence Handle10.1080/014423500229855 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Gitbg%3D

    Article  CAS  Google Scholar 

  17. SV Vyazovkin AI Lesnikovich (1988) Russ. J. Phys. Chem. 62 1535

    Google Scholar 

  18. S Vyazovkin (1996) Int. J. Chem. Kinet. 28 95 Occurrence Handle10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G Occurrence Handle1:CAS:528:DyaK28XpsVagtg%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyazovkin S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyazovkin, S. Model-free kinetics . J Therm Anal Calorim 83, 45–51 (2006). https://doi.org/10.1007/s10973-005-7044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7044-6

Keywords

Navigation