Skip to main content
Log in

Anti-solvents tuning cellulose nanoparticles through two competitive regeneration routes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, cellulose nanoparticles regenerated by water, methanol, ethanol and n-propanol as the anti-solvents from ionic liquid solution were studied systematically. Crystallinity and enthalpy in cellulose degradation of the regenerated cellulose decreased in the order water > methanol > ethanol > n-propanol. Nevertheless, the thermal stability of the regenerated cellulose showed an opposite trend. In addition, morphology of regenerated cellulose changed sharply with the variation of anti-solvents. Moreover, we introduced Kamlet–Taft parameters of anti-solvents to analyze the crystallinity, enthalpy in cellulose degradation and thermal stability variation of regenerated cellulose. Hydrogen bond acidity and basicity of anti-solvent definitely drove the property variation of regenerated cellulose nanoparticles to opposite directions. Furtherly, we proposed two competitive cellulose regeneration routes, providing a reasonable explanation to the crystallinity, enthalpy in cellulose degradation and thermal stability variation of regenerated cellulose nanoparticles. Our work successfully demonstrate that H-bond acidity/basicity of anti-solvent could tune the property of regenerated cellulose nanoparticles, unveiling the competitive routes of cellulose regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abushammala H, Krossing I, Laborie M (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616

    Article  CAS  PubMed  Google Scholar 

  • Alemán-Domínguez ME, Ortega Z, Benítez AN, Vilariño-Feltrer G, Gómez-Tejedor JA, Vallés-Lluch A (2018) Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J Appl Polym Sci 135:46134–46142

    Article  CAS  Google Scholar 

  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10:1896–1907

    Article  CAS  PubMed  Google Scholar 

  • Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Ding Z, Chi Z, Gu W, Gu S, Liu J, Wang H (2012) Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr Polym 89:7–16

    Article  CAS  PubMed  Google Scholar 

  • Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574

    Article  CAS  Google Scholar 

  • Fan Z, Chen J, Guo W, Ma F, Sun S, Zhou Q (2017) Crystallinity of regenerated cellulose from [Bmim]Cl dependent on the hydrogen bond acidity/basicity of anti-solvents. RSC Adv 7:41004–41010

    Article  CAS  Google Scholar 

  • French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609

    Article  CAS  Google Scholar 

  • Gupta KM, Hu Z, Jiang J (2013) Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv 3:12794–12801

    Article  CAS  Google Scholar 

  • Hattori K, Arai A (2016) Preparation and hydrolysis of water-stable amorphous cellulose. ACS Sustain Chem Eng 4:1180–1186

    Article  CAS  Google Scholar 

  • Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromol 13:2896–2905

    Article  CAS  Google Scholar 

  • He J, Cui S, Wang S (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170

    Article  CAS  Google Scholar 

  • Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromol 15:1498–1506

    Article  CAS  Google Scholar 

  • Jandura P, Kokta BV, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365

    Article  CAS  Google Scholar 

  • Jiang J, Xiao Y, Huang W, Gong P, Peng S, He J, Fan M, Wang K (2017) An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution. Carbohydr Polym 178:295–301

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu X, Zhang S, Yao Y, Yao X, Xu J, Lu X (2015) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sale KL, Simmons BA, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun X, Hao M, Huang C, Xue Z, Mu T (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr Polym 117:99–105

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335

    Article  CAS  Google Scholar 

  • Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J (2012) Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem Commun 48:6283–6285

    Article  CAS  Google Scholar 

  • Marcus Y (1991) The effectiveness of solvents as hydrogen bond donors. J Solut Chem 20:929–944

    Article  CAS  Google Scholar 

  • Mi Q, Ma SR, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsenf J, Jeff Y (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559

    Article  CAS  Google Scholar 

  • Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775

    Article  CAS  PubMed  Google Scholar 

  • Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273

    Article  CAS  Google Scholar 

  • Stephen JE (2010) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Google Scholar 

  • Sun X, Chi Y, Mu T (2014) Studies on staged precipitation of cellulose from an ionic liquid by compressed carbon dioxide. Green Chem 16:2736–2744

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Zhang J, Yu J, Zhang J (2017) Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries. ACS Appl Mater Interfaces 9:24591–24599

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Guo J, Zhuang L, Wang Y, Xu B (2015) Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid. Int J Biol Macromol 76:70–79

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang X, Wu X, Lu C (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:845–852

    Article  CAS  PubMed  Google Scholar 

  • Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal–graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (No. 31370556), Beijing Municipality Science and Technology Planning Project (D161100002116001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Chen, J., Guo, W. et al. Anti-solvents tuning cellulose nanoparticles through two competitive regeneration routes. Cellulose 25, 4513–4523 (2018). https://doi.org/10.1007/s10570-018-1897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1897-x

Keywords

Navigation