Skip to main content
Log in

Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were evaluated using thermogravimetric analysis (TGA) and X-ray diffraction. Supercritical-drying produced NFCs with the least thermal stability and the lowest crystallinity index. Air-drying or spray-drying produced NFCs which were more thermally stable compared with freeze-dried NFCs. The CNCs dried by the three methods (air-drying, freeze-drying, and spray-drying) have similar onset temperature of thermal degradation. The different drying methods resulted in various char weight percentages at 600 °C for the dried NFCs or CNCs from TGA measurements. The dried NFCs are pure cellulose I while the dried CNCs consist of cellulose I and II. The calculated crystallinity indices differ with each drying method. The cellulose II content in CNCs changes as a function of drying method. For the application of nanocellulose in non polar thermoplastics, spray-dried products are recommended according to their higher thermal stability and higher crystallinity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19(2):425–433

    Article  CAS  Google Scholar 

  • Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  • Bloch J (2011) UMaine to build nation’s only cellulose nanofibrils pilot plant. http://umaine.edu/news/blog/2011/10/28/umaine-to-build-nation’s-only-cellulose-nanofibrils-pilot-plant/

  • Cabrera RQ, Meersman F, McMillan PF, Dmitriev V (2011) Nanomechanical and structural properties of native cellulose under compressive stress. Biomacromolecules 12:2178–2183

    Article  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibres as reinforcing agents for structural materials. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization and properties. American Chemical Society, Washington, DC, pp 169–186

    Google Scholar 

  • Cranston ED, Kan KHM, Eita M, Johansson E, Netrval J, Salajkova M, Arwin H, Wågberg L (2012) Mechanical testing of thin film nanocellulose materials. http://www.tappi.org/Hide/Events/2012-Nanotechnology-Conference/Papers/12NANO05.aspx. Accessed 28 Sept 2012

  • Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35(11):1267–1276

    Article  Google Scholar 

  • Fengel D, Wegener G (1998) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Ferguson W (2012) Why wood pulp is world’s new wonder material. New Sci 2878:24

    Google Scholar 

  • French AD, Sntiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibers. Macromol Chem Phys 206(15):1568–1575

    Article  CAS  Google Scholar 

  • Gjønnea J, Norman N (1958) The use of half width and position of the lines in the X-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12(10):2028–2033

    Article  Google Scholar 

  • Gjønnea J, Norman N (1960) X-ray investigations on cellulose II and mixtures of cellulose I and II. 1. A method for characterizing and determining the relative contents of the two modifications. Acta Chem Scand 14(3):683–688

    Article  Google Scholar 

  • Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose. Pulp Paper Mag Can 64(12):T517–T527

    CAS  Google Scholar 

  • Guinier A (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. W. H. Freeman and Company, San Francisco, London

    Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hatakeyama H (1981) Structural change of amorphous cellulose by water- and heat-treatment. Makromol Chem 182:1655–1668

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68(12):2547–2552

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Symp 37:797–813

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibers in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468

    Article  CAS  Google Scholar 

  • Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163

    CAS  Google Scholar 

  • Kim D, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33

    Article  CAS  Google Scholar 

  • Kimura M, Hatakeyama T, Nakano J (1974) DSC study on recrystallization of amorphous cellulose with water. J Appl Polym Sci 18:3069–3076

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Fundamentals and analytical methods, Vol 1. Weinheim, New York, Chichester, Brisbane, Singapore, Toronto: Wiley-VCH VerlagGmbH, Weinheim 1

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  Google Scholar 

  • Kouris M, Ruck H, Mason SG (1958) The effect of water removal on the crystallinity of cellulose. Can J Chem 36:931–948

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science Publishers, Amsterdam, the Netherlands

    Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416

    Article  CAS  Google Scholar 

  • Levan SL (1989) Thermal degradation. In: Schniewing AP (ed) Concise encyclopedia of wood &wood-based materials, 1st edn. Pergamon Press, Elmsford, NY, pp 271–273

    Google Scholar 

  • Li S, Lyons-hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817

    Article  CAS  Google Scholar 

  • Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol 42:219–231

    Article  CAS  Google Scholar 

  • Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275

    Article  CAS  Google Scholar 

  • Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nakamura K, Hatakeyma T, Hatakeyma H (1981) Studies on bound water of cellulose by differential scanning calorimetry. J Text Inst 72(9):607–613

    Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal Structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Peng Y, Shi SQ, Ingram L (2011) Chemical emissions from adhesive-bonded wood products at elevated temperatures. Wood Sci Technol 45:627–644

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012a) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  CAS  Google Scholar 

  • Peng Y, Han Y, Gardner DJ (2012b) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448–461

    CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6):1597–1602

    Article  CAS  Google Scholar 

  • Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314

    Article  CAS  Google Scholar 

  • Rämänen P, Penttilä PA, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19(3):901–912

    Article  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Itoh T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr., Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Google Scholar 

  • Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  CAS  Google Scholar 

  • Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305

    Article  CAS  Google Scholar 

  • Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In: Rowell RM (ed) The chemistry of solid wood. the American Chemical Society, Seattle, Washington, pp 489–529

    Chapter  Google Scholar 

  • Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100:6496–6504

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applicatioins. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Svagan AJ, Azizi Samir MAS, Bergund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269

    Article  CAS  Google Scholar 

  • Tanaka F, Fukui N (2004) The behavior of cellulose molecules in aqueous environments. Cellulose 11:33–38

    Article  CAS  Google Scholar 

  • Wadehra IL, Manley R, St J (1965) Recrystallization of amorphous cellulose. J Appl Polym Sci 9:2627–2630

    Article  CAS  Google Scholar 

  • Wallace R (2012) USDA under Secretary Sherman unveils nanocellulose production facility. http://blogs.usda.gov/2012/08/03/usda-under-secretary-sherman-unveils-nanocellulose-production-facility/

  • Wegner TH, Jones PE (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118

    Article  CAS  Google Scholar 

  • Yildiz S, Gümüşkaya E (2007) The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build Environ 42:62–67

    Article  Google Scholar 

  • Yue Y (2011) A comparative study of cellulose I and II fibers and nanocrystals. School of renewable natural resources (Vol. Master of Science). Louisiana State University, Baton Rouge

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Maine Economic Improvement Fund and the USDA Forest Service Forest Product Laboratory. The content and information does not necessarily reflect the position of the funding agencies. Much appreciation goes to J. Rettenmaier & Söhne GMBH Company for donating the nanofibrillated cellulose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Gardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Gardner, D.J., Han, Y. et al. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20, 2379–2392 (2013). https://doi.org/10.1007/s10570-013-0019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0019-z

Keywords

Navigation