Skip to main content
Log in

TEMPO-mediated oxidation of microcrystalline cellulose: Influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A series of microcrystalline cellulose samples were reacted with catalytic amounts of 2, 2, 6, 6-tetramethyl-1-piperidine oxoammonium salt (TEMPO), sodium hypochlorite and sodium bromide in Na2CO3/NaHCO3 buffer solution at different temperature (15 °C, 20 °C, 30 °C, 35 °C, 40 °C, 50 °C). The oxidation procedures included first and second oxidation. The first oxidation was a classical process for activating cellulose for the second oxidation. A substantial increase in the reactivity of the second oxidation cellulose samples was observed in comparison to those in the first oxidation and a relationship between oxidation procedures and accessibility of cellulose primary hydroxyl groups was directly established. For the characterization, we have used several methods, mainly XRD, FTIR. In all samples, the partial primary alcohol groups were selectively oxidized into carboxyl groups. The reaction during the first oxidation procedure mainly occurs in disordered regions of MCC and crystal surface. But the second oxidation procedure took place not only in disordered regions and crystal surface but inside crystalline region of cellulose I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yalpani, Carbohyd. Res., 140, 61 (1985).

    Article  Google Scholar 

  2. E. C. Yackel and W. O. Kenyon, J. Am. Chem. Soc., 64, 121 (1942).

    Article  CAS  Google Scholar 

  3. T. P. Nevell, J. Text. Inst., 42, T191 (1951).

    Google Scholar 

  4. T. J. Painter, Carbohyd. Res., 55, 95 (1977).

    Article  CAS  Google Scholar 

  5. A. E. De Nooy, A. C. Besemer, and H. Van Bekkum, Recl. Trav. Chim. Pays-Bas, 113, 165 (1994).

    Article  Google Scholar 

  6. A. E. De Nooy, A. C. Besemer, and H. Van Bekkum, Carbohyd. Res., 269, 89 (1995).

    Article  Google Scholar 

  7. A. E. De Nooy, A. C. Besemer, H. Van Bekkum, J. A. P. P Van Dijk, and J. A. M. Smit, Macromolecules, 29, 6541 (1996).

    Article  Google Scholar 

  8. A. E. De Nooy, A. C. Besemer, and H. Van Bekkum, Tetrahedron., 51, 8023 (1995b).

    Article  Google Scholar 

  9. P. S. Chang and J. F. Robyt, J. Carbohyd. Chem., 15, 819 (1996).

    Article  CAS  Google Scholar 

  10. A. Isogai and K. Kato, Cellulose, 5, 153 (1998).

    Article  CAS  Google Scholar 

  11. C. Tahiri and M. R. Vignon, Cellulose, 7, 177 (2000).

    Article  CAS  Google Scholar 

  12. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  Google Scholar 

  13. T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon, and A. Isogai, Biomacromolecules, 7, 1687 (2006).

    Article  CAS  Google Scholar 

  14. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    Article  CAS  Google Scholar 

  15. L. Zhuo, S. Renneckar, and R. Barone Justin, Cellulose, 17, 57 (2010).

    Article  Google Scholar 

  16. M. Rinaudo, La papeterie, 90, 479 (1968).

    CAS  Google Scholar 

  17. L. Dantas, A. Heyraud, J. Courtois, and M. Milas, Carbohyd. Polym., 24, 185 (1994).

    Article  CAS  Google Scholar 

  18. D. Da Silva Perez, S. Montanari, and M. R. Vignon, Biomacromolecules, 4, 1417 (2003).

    Article  Google Scholar 

  19. Y. Habibi and M. R. Vignon, Cellulose, 15, 177 (2008).

    Article  CAS  Google Scholar 

  20. L. Einfeldt, W. Günther, D. Klemm, and B. Heublein, Cellulose, 12, 15 (2005).

    Article  CAS  Google Scholar 

  21. T. Isogai, M. Yanagisawa, and A. Isogai, Cellulose, 15, 815 (2008).

    Article  CAS  Google Scholar 

  22. T. Isogai, M. Yanagisawa, and A. Isogai, Cellulose, 16, 117 (2009).

    Article  CAS  Google Scholar 

  23. A. Ishizu, J. Japan Tappi, 27, 371 (1973).

    Article  CAS  Google Scholar 

  24. Y. Matsumoto, Asakura Press, Tokyo, 182–188 (2000).

  25. I. Shibata and A. Isogai, Cellulose, 10, 151 (2003).

    Article  CAS  Google Scholar 

  26. D. Da Silva Perez, S. Montanari, and M. R. Vignon, Biomacromolecules, 4, 1417 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Kuk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhao, S., Zhang, J. et al. TEMPO-mediated oxidation of microcrystalline cellulose: Influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues. Fibers Polym 14, 352–357 (2013). https://doi.org/10.1007/s12221-013-0352-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0352-8

Keywords

Navigation