Skip to main content
Log in

Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nonionic surfactants could effectively improve the enzymatic hydrolysis efficiency of lignocellulose, while small molecule anionic and cationic surfactants usually inhibited the enzymatic hydrolysis. The results showed that the anionic surfactant sodium dodecyl sulfate (SDS) could improve the enzymatic hydrolysis efficiency of Avicel at the concentration range of 0.1–1 mM, but it did inhibit enzymatic hydrolysis at higher concentration. Cationic surfactant cetyltrimethylammonium bromide (CTAB) was used to regulate the surface charge of SDS; thereby catanionic surfactant SDS-CTAB was formed. The effect of SDS-CTAB catanionic surfactant with varied molar ratios on the enzymatic hydrolysis of pure cellulose and corn stover at various enzymatic hydrolysis environments was investigated. SDS-CTAB could increase the enzymatic hydrolysis of corn stover at high solid loading from 33.3 to 42.4%. Using SDS-CTAB could reduce about 58% of the cellulase dosage to achieve 80% of the enzymatic hydrolysis of corn stover. SDS-CTAB catanionic surfactant could regulate the surface charge of cellulase in the hydrolyzate and reduce the non-productive adsorption of cellulase on the lignin, thereby improving the enzymatic hydrolysis efficiency of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amante JC, Scamehorn JF, Harwell JH (1991) Precipitation of mixtures of anionic and cationic surfactants: II. Effect of surfactant structure, temperature, and pH. J Colloid Interface Sci 144:243–253. doi:10.1016/0021-9797(91)90255-7

    Article  CAS  Google Scholar 

  • Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007a) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 41:186–195. doi:10.1016/j.enzmictec.2007.01.003

    Article  Google Scholar 

  • Börjesson J, Peterson R, Tjerneld F (2007b) Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb Technol 40:754–762. doi:10.1016/j.enzmictec.2006.06.006

    Article  Google Scholar 

  • Cai C, Qiu XQ, Lin XL, Lou HM, Pang YX, Yang DJ, Chen SW, Cai KF (2016) Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. Bioresour Technol 216:968–975. doi:10.1016/j.biortech.2016.06.043

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364. doi:10.1016/S0141-0229(02)00134-5

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Jiang Y, Geng T, Li Q, Li G, Ju H (2014) Influences of temperature, pH and salinity on the surface property and self-assembly of 1:1 salt-free catanionic surfactant. J Mol Liq 199:1–6. doi:10.1016/j.molliq.2014.07.045

    Article  Google Scholar 

  • Jokela P, Joensson B, Khan A (1987) Phase equilibria of catanionic surfactant-water systems. J Phys Chem 91:3291–3298. doi:10.1021/j100296a037

    Article  CAS  Google Scholar 

  • Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 40:888–895. doi:10.1016/j.enzmictec.2006.07.014

    Article  CAS  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208. doi:10.1016/j.biortech.2011.09.091

    Article  CAS  Google Scholar 

  • Kume G, Gallotti M, Nunes G (2007) Review on anionic/cationic surfactant mixtures. J Surfactants Deterg 11:1–11. doi:10.1007/s11743-007-1047-1

    Article  Google Scholar 

  • Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6:405–415. doi:10.1007/s12155-012-9276-1

    Article  CAS  Google Scholar 

  • Li JH, Li SZ, Fan CY, Yan ZP (2012) The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids Surf B Biointerfaces 89:203–210. doi:10.1016/j.colsurfb.2011.09.019

    Article  CAS  Google Scholar 

  • Li HJ, Pu YQ, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492. doi:10.1002/bit.25108

    Article  CAS  Google Scholar 

  • Lin XL, Qiu XQ, Yuan L, Li ZH, Lou HM, Zhou MS, Yang DJ (2015a) Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresour Technol 185:165–170. doi:10.1016/j.biortech.2015.02.067

    Article  CAS  Google Scholar 

  • Lin XL, Qiu XQ, Zhu DM, Li ZH, Zhan NX, Zheng JY, Lou HM, Zhou MS, Yang DJ (2015b) Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresour Technol 193:266–273. doi:10.1016/j.biortech.2015.06.089

    Article  CAS  Google Scholar 

  • Lin XL, Cai C, Lou HM, Qiu XQ, Pang YX, Yang DJ (2016a) Effect of cationic surfactant cetyltrimethylammonium bromide on the enzymatic hydrolysis of cellulose. Cellulose. doi:10.1007/s10570-016-1089-5

    Google Scholar 

  • Lin XL, Qiu XQ, Lou HM, Li ZH, Zhan NX, Huang JH, Pang YX (2016b) Enhancement of lignosulfonate-based polyoxyethylene ether on enzymatic hydrolysis of lignocelluloses. Ind Crops Prod 80:86–92. doi:10.1016/j.indcrop.2015.11.024

    Article  CAS  Google Scholar 

  • Lou HM, Wang MX, Lai HR, Lin XL, Zhou MS, Yang DJ, Qiu XQ (2013a) Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol 146:478–484. doi:10.1016/j.biortech.2013.07.115

    Article  CAS  Google Scholar 

  • Lou HM, Zhu JY, Lan TQ, Lai HR, Qiu XQ (2013b) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Chemsuschem 6:919–927. doi:10.1002/cssc.201200859

    Article  CAS  Google Scholar 

  • Lou HM, Lai HR, Wu S, Li XL, Yang DJ, Qiu XQ, Huang JH, Yi CH (2014a) Enhancing enzymatic hydrolysis of crystalline cellulose and lignocellulose by adding long-chain fatty alcohols. Cellulose 21:3361–3369. doi:10.1007/s10570-014-0331-2

    Article  CAS  Google Scholar 

  • Lou HM, Zhou HF, Li XL, Wang MX, Zhu JY, Qiu XQ (2014b) Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose. Cellulose 21:1351–1359. doi:10.1007/s10570-014-0237-z

    Article  CAS  Google Scholar 

  • Lou HM, Yuan L, Qiu XQ, Qiu KX, Fu JG, Pang YX, Huang JH (2015) Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols. Bioresour Technol 200:48–54. doi:10.1016/j.biortech.2015.10.006

    Article  Google Scholar 

  • Mata J, Varade D, Ghosh G, Bahadur P (2004) Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate. Colloids Surf Physicochem Eng Asp 245:69–73. doi:10.1016/j.colsurfa.2004.07.009

    Article  CAS  Google Scholar 

  • Menger FM, Littau C (1991) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452. doi:10.1021/ja00004a077

    Article  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. In: Zhu JY, Zhang X, Pan XJ (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass, vol 1067. American Chemical Society, Washington, pp 145–167

    Chapter  Google Scholar 

  • Ouyang J, Dong ZW, Song XY, Lee X, Chen M, Yong Q (2010) Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresour Technol 101:6685–6691. doi:10.1016/j.biortech.2010.03.085

    Article  CAS  Google Scholar 

  • Ouyang J, Ma R, Huang WT, Li X, Chen M, Yong Q (2011) Enhanced saccharification of SO2 catalyzed steam-exploded corn stover by polyethylene glycol addition. Biomass Bioenergy 35:2053–2058. doi:10.1016/j.biombioe.2011.01.047

    Article  CAS  Google Scholar 

  • Parekh P, Varade D, Parikh J, Bahadur P (2011) Anionic–cationic mixed surfactant systems: micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids Surf Physicochem Eng Asp 385:111–120. doi:10.1016/j.colsurfa.2011.05.057

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi:10.1126/science.1114736

    Article  CAS  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi:10.1021/bp0702018

    Article  CAS  Google Scholar 

  • Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354:329–333. doi:10.1126/science.aaf7810

    Article  CAS  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Controll Release 73:137–172. doi:10.1016/S0168-3659(01)00299-1

    Article  CAS  Google Scholar 

  • Wang ZJ, Zhu JY, Fu YH, Qin MH, Shao ZY, Jiang JG, Yang F (2013) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels 6:156. doi:10.1186/1754-6834-6-156

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Yu Z, Gwak KS, Treasure T, Jameel H, Chang HM, Park S (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. Chemsuschem 7:1942–1950. doi:10.1002/cssc.201400042

    Article  CAS  Google Scholar 

  • Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45. doi:10.1016/j.copbio.2013.09.008

    Article  CAS  Google Scholar 

  • Zhao GX, Li XG (1991) Solubilization of n-octane and n-octanol by a mixed aqueous solution of cationic-anionic surfactants. J Colloid Interface Sci 144:185–190. doi:10.1016/0021-9797(91)90249-8

    Article  CAS  Google Scholar 

  • Zhao XB, Zhang LH, Liu DH (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482. doi:10.1002/bbb.1331

    Article  CAS  Google Scholar 

  • Zhou HF, Lou HM, Yang DJ, Zhu JY, Qiu XQ (2013) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res 52:8464–8470. doi:10.1021/ie401085k

    Article  CAS  Google Scholar 

  • Zhou Y, Chen HM, Qi F, Zhao XB, Liu DH (2015) Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose. Bioresour Technol 182:136–143. doi:10.1016/j.biortech.2015.01.137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (21376100, 21676109) and Guangdong Province Science and Technology Plan (2013B051000011). The authors thank the China Scholarship Council (201506150019) for supporting Dr. Xuliang Lin in conducting part of this research at the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Lou or Xueqing Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Lou, H., Qiu, X. et al. Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover. Cellulose 24, 669–676 (2017). https://doi.org/10.1007/s10570-016-1186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1186-5

Keywords

Navigation