Skip to main content
Log in

Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recent findings indicate there is only a small window of sulfuric acid concentration (60–65 %) and temperature (45–65 °C) which allows efficient extraction of cellulose nanocrystals in significant quantities from bleached chemical pulp. In the present report, we develop a systematic explanation for how hydrolysis temperature, at a specific acid concentration, governs CNC surface properties. We demonstrate that CNCs with different suspension viscosity, stability in electrolyte-containing solutions, and optical properties can be produced, based on the presence or not of a precipitated oligosaccharide layer (OSL) on the surface of the nanocrystals. At hydrolysis temperatures below 65 °C, the degree of polymerization (DP) distribution of cellulose chains in CNC samples exhibits a bimodal distribution, indicating an accumulation of oligosaccharides on the CNC surface which increases as the hydrolysis temperature is decreased. At low hydrolysis temperature (45 °C), the oligosaccharides dissolved in the strong acid phase have a DP between 7 and 20 and precipitate onto CNCs when the reaction is quenched by diluting with water. As the temperature of hydrolysis is increased (50–60 °C), the dissolved oligosaccharides are hydrolyzed faster and their DP decreases such that they remain soluble after quenching. At 65 °C, no precipitated oligosaccharides can be detected on the CNC surface. Based on these results, we propose possible explanations to account for the effects of the OSL on the CNC suspension viscosity and stability and on optical properties of CNC films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behaviour of cellulose microcrystal suspension. J Wood Sci 45(3):258–261

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulose whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48(2):333–335

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J (2016) Ionic strength control of sulphated cellulose nanocrystal suspension viscosity. Tappi J 15(6):373–382

    Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12(1):167–172

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13(5):1486–1494

    Article  CAS  Google Scholar 

  • Beck S, Méthot M, Bouchard J (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22(1):101–116

    Article  CAS  Google Scholar 

  • Bouchard J, Méthot M, Lapierre L, Berry R (2004) Combined effect of polysulphide pulping and ECF bleaching on softwood polysaccharides. J Pulp Pap Sci 30(6):172–176

    CAS  Google Scholar 

  • Çinar S, Anderson DD, Akinc M (2015) Influence of bound water layer on the viscosity of oxide nanopowder suspensions. J Eur Ceram Soc 35(2):613–622

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transitions of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14(3):570–574

    Article  CAS  Google Scholar 

  • Evans R, Wearne RH, Wallis AFA (1989) Molecular weight distribution of cellulose as its tricarbanilate by high performance size exclusion chromatography. J Appl Polym Sci 37(12):3291–3303

    Article  CAS  Google Scholar 

  • Fink HP, Philipp B, Paul D, Serimaa R, Paakkari T (1987) The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer 28(8):1265–1270

    Article  CAS  Google Scholar 

  • Fraschini C, Chauve G, LeBerre JF, Ellis S, Méthot M, O’Connor B, Bouchard J (2014) Practical issues in the determination of nanocrystalline cellulose particle size. Nordic Pulp Pap Res J 29(1):31–40

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure-property-process inter-relationships in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402

    CAS  Google Scholar 

  • Hasegawa M, Isogai A, Onabe F (1993) Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr Polym 20(4):279–283

    Article  CAS  Google Scholar 

  • Kovacs T, Naish V, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3):1–16

    Article  Google Scholar 

  • Lapierre L, Bouchard J (1999) Molecular weight determination of softwood kraft cellulose: effects of carbanilation solvent, hemicelluloses, and lignin. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Tappi Press, Atlanta, pp 239–262

    Google Scholar 

  • Li C, Akinc M (2005) Role of bound water on the viscosity of nanometric alumina suspensions. J Am Ceram Soc 88(6):1448–1454

    Article  CAS  Google Scholar 

  • Luthe C, Berry R, Radiotis T, Nadeau L (2003) Measuring softwood yield gain at kraft pulp mills. J Pulp Pap Sci 29(11):371–376

    CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16(4):327–344

    Article  CAS  Google Scholar 

  • Mark H (1940) Intermicellar hole and tube system in fiber structure. J Phys Chem 44(6):764–788

    Article  CAS  Google Scholar 

  • Peri S, Muthukumar L, Nazmul Karim M, Khare R (2012) Dynamics of cello-oligosaccharides on a cellulose crystal surface. Cellulose 19(6):1791–1806

    Article  CAS  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149

    CAS  Google Scholar 

  • Sarko A, Marchessault RH (1969) Supramolecular structure of polysaccharides. J Polym Sci C Polym Symp 28(1):317–331

    Article  Google Scholar 

  • Schroeder LR, Haigh FC (1979) Cellulose and wood pulp polysaccharides: gel permeation chromatographic analysis. Tappi J 62(10):103–105

    CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8):741–751

    Article  Google Scholar 

  • Vejdovszky P, Oberlerchner J, Zweckmair T, Roseneau T, Potthast A (2016) Preparation and analysis of cello- and xylooligosaccharides. Adv Polym Sci 271:53–92

    Google Scholar 

  • Wierenga AM, Philipse AP (1997) Low-shear viscosities of (semi-)dilute, aqueous dispersions of charged boehmite rods: dynamic scaling of double layer effects. Langmuir 13(17):4574–4582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Transformative Technology Program of Natural Resources Canada. The authors thank Giuseppa Zambito for performing the ICP-OES analyses, Drs. Wadood Hamad and Thomas Hu for insightful suggestions, and CelluForce for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bouchard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchard, J., Méthot, M., Fraschini, C. et al. Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23, 3555–3567 (2016). https://doi.org/10.1007/s10570-016-1036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1036-5

Keywords

Navigation