Skip to main content
Log in

Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Reinforcement of polyvinyl alcohol (PVA) hydrogels was achieved by direct chemical cross-linking of surface modified microcrystalline cellulose (MCC) whiskers with PVA. In order to produce hydrogels, the MCC whiskers were first obtained by TEMPO-mediated oxidation of the cellulose substrate and ultrasonication followed by direct cross-linking to PVA (Mw 98,000) via forming acetal bonds and freeze–thawing. The viscoelastic properties of the produced hydrogels were clearly improved following the chemical cross-linking, featuring values for viscous and elastic moduli G′ and G″ on the order of 10 kPa, which is particularly interesting for biomedical orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMA:

Dynamic mechanical analysis

DMSO:

Dimethyl sulfoxide

ESEM:

Environmental scanning electron microscopy

MFC:

Microfibrillated cellulose

MCC:

Microcrystalline cellulose

NCC:

Nanocrystalline cellulose

PEG:

Polyethylene glycol

PEI:

Polyethelene imine

PVA:

Polyvinyl alcohol

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

References

  • Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373

    Article  CAS  Google Scholar 

  • Alves MH, Jensen BEB, Smith AAA, Zelikin AN (2011) Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci 11(10):1293–1313

    Article  CAS  Google Scholar 

  • Bader RA, Rochefort WE (2008) Rheological characterization of photopolymerized poly(vinylalcohol) hydrogels for potential use in nucleus pulposus replacement. J Biomed Mat Res A 86A:494–501

    Google Scholar 

  • Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Google Scholar 

  • Bao Q (1998) US Patent 5705780-A

  • Cascone MG, Laus M, Ricci D, Sbarbati del Guerra R (1995) Evaluation of poly(vinyl alcohol) hydrogels as a component of hybrid artificial tissues. J Mater Sci Mater Med 6:71–75

    Article  CAS  Google Scholar 

  • Cha W, Hyon S, Ikada Y (1992) Transparent poly(vinil alcohol) hydrogel with high water content and high strength. Macromol Chem 193:1913–1925

    Article  CAS  Google Scholar 

  • Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  • Choi J, Bodugoz-Senturk H, Kung HJ, Malhi AS, Muratoglu OK (2007) Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials 28:772–780

    Article  CAS  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1996) On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 10:1153–1174

    Google Scholar 

  • Fukae R, Yoshimura M, Yamamoto T, Nishinari K (2011) Effect of stereoregularity and molecular weight on the mechanical properties of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 120(1):573–578

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Hoshino H, Okada S, Urakawa H, Kajiwara K (1996) Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym Bull (Berl) 37:237–244

    Article  CAS  Google Scholar 

  • Hyon S-H, Cha W-I, Ikada Y (1989) Preparation of transparent poly(vinyl alcohol) hydrogel. Polym Bull (Berl) 22:119–122

    Article  CAS  Google Scholar 

  • Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21(10):1174–1184

    Article  CAS  Google Scholar 

  • Inoue T (1972) Water-resistant poly(vinyl alcohol) plastics Japanese patent 47-012,854. Japan Patent

  • Isogai A, Kato Y (1998) Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Janssen RA, Lee PI, Ajello EM (1992) Preparation of stable polyvinyl alcohol hydrogel contact lens US Patent 5(174):929

    Google Scholar 

  • Kanaya T, Takahashi N, Takeshita H, Ohkura M, Nishida K, Kaji K (2012) Structure and dynamics of poly(vinyl alcohol) gels in mixtures of dimethyl sulfoxide and water. Polym J 44:83–94

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492. doi:10.1021/Bm0000337

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  Google Scholar 

  • Kobayashi M, Chang Y-S, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248

    Article  CAS  Google Scholar 

  • Kuriaki M, Nakamura K, Mizutani J (1989) Application of transparent polyvinyl alcohol (PVA) gel for contact lens. Kobunshi Ronbunshu 46(11):739

    Article  CAS  Google Scholar 

  • Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485

    Article  CAS  Google Scholar 

  • Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90B:492–502

    Article  CAS  Google Scholar 

  • Lozinsky VI (1998) Cryotropic gelation of poly(vinyl alcohol) solutions. Usp Khim 67:641–655

    Article  CAS  Google Scholar 

  • Lozinsky VI, Plieva FM (1998) Poly(vinylalcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb Technol 23:227–242

    Article  CAS  Google Scholar 

  • Mihranyan A, Edsman K, Strømme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21:267–272

    Article  CAS  Google Scholar 

  • Nakamura T, Ueda H, Tsuda T, Li Y-H, Kiyotani T, Inoue M, Matsumoto K, Sekine T, Yu L, Hyon S-H, Shimizu Y (2001) Long-term implantation test and tumorigenicity of polyvinyl alcohol hydrogel plates. J Biomed Mater Res 56(2):289–296

    Article  CAS  Google Scholar 

  • Otsuka E, Suzuki A (2009) A simple method to obtain a swollen PVA gel crosslinked by hydrogen bonds. J Appl Polym Sci 114:10–16

    Article  CAS  Google Scholar 

  • Park J-S, Park J-W, Ruckenstein E (2001) On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl Polym Sci 82:1816–1823

    Article  CAS  Google Scholar 

  • Peppas NA, Stauffer SR (1991) Reinforced uncross-linked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release 16(4):305–310

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Laupretre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly(vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38:6629–6639

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Steckler R (1984) Disposable, hydrogel soft contact lenses US Patent 4, 426,492

  • Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G (2011) Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels. Nanoscale Res Lett 6:626–632

    Article  Google Scholar 

  • Wan W-K, Millon L (2005) Poly(vinyl alcohol)-bacterial cellulose nanocomposite, US Patent 2005/0037082 Al

  • Wang MX (2007) Method for preparing artificial dura mater of brain using bacterial cellulose, Chinese patent CN101053674

  • Watase M, Nishinari K (1983) Anomalous rheological behaviour of poly(vinyl alcohol) gels. Polym Commun 24(9):270–273

    CAS  Google Scholar 

  • Watase M, Nishinari K (1988) Thermal and rheological properties of poly(vinylalchol) hydrogels prepared by repeated cycles of freezing and thawing. Makromol Chem 189(4):871–880

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Prof. Derek Gray for providing lab facilities and discussions. Mr Joshua Kastner and Professor Milan Maric are acknowledged for their assistance during rheology tests. This work has been financed partly by the visiting scientist program of the FQRNT Centre for Self-assembled Chemical structures Network, and partly by the Swedish Research Council and Swedish Royal Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Mihranyan.

Additional information

This work was done within the FQRNT Centre for Self-Assembled Chemical Structures Network at the Department of Chemistry, McGill University, 3420 Rue University, Montreal, Canada H3A 2A7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihranyan, A. Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20, 1369–1376 (2013). https://doi.org/10.1007/s10570-013-9882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9882-x

Keywords

Navigation