Skip to main content

Rheological Properties and Processing of Polymer Blends with Micro- and Nanofibrillated Cellulose

  • Chapter
  • First Online:
Agricultural Biomass Based Potential Materials

Abstract

Recently, scientists have a high interest in using micro- and nanofibrillated cellulose (MFC/NFC) fibers as reinforcing components in nanocomposites together with a biopolymer matrix. This interest is abstracted from the abundant availability of cellulose in nature and the need for renewable resources. Besides chemical aspects, however, the successful formulation of polymer blends with nanocellulose additives requires a good understanding of the physical compounding and mixing properties. Therefore, the rheological features of aqueous MFC and NFC suspensions play an important role for the further development of industrial applications. Generally, the MFC/NFC suspensions show nonlinear behavior in the form of a pseudoplastic or dilatant fluid at higher shear rates. There are different parameters affecting their rheological behavior including processing parameters, such as degree of fibrillation and concentration, and rheometrical parameters, such as shear rate, temperature, rheometer geometry (gap), wall slip, and flocculation. Controlling these parameters is very important before and after the processing of MFC or NFC due to the direct or indirect effects on the viscosity of the suspension. The aggregation of fibrillated cellulose is a conventional barrier to obtain suitable dispersive mixing and an important reason for the loss of mechanical properties of nanocomposites. As outlined in this chapter, better physical understanding of the rheological behavior of MFC or NFC is helpful for further processing of polymer blends by melt extrusion, injection molding, or electrospinning. A better rheological insight helps to control the processing of nanocomposites and avoid the named issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil APS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    CAS  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686

    CAS  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier JL (2012) Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Carbohydr Polym 87:1045–1057

    CAS  Google Scholar 

  • Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 3:1315–1328

    Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, Weinheim

    Google Scholar 

  • Alemdar A, Sain M (2008a) Isolation and characterization of nanofibres from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    CAS  PubMed  Google Scholar 

  • Alila S, Besbas I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Ind Crops Prod 41:250–259

    Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surf A 142:75–82

    CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newton Fluid Mech 56:221–251

    CAS  Google Scholar 

  • Barnes HA (1997) Thixotropy: a review. J Non-Newton Fluid Mech 70:1–33

    CAS  Google Scholar 

  • Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620

    CAS  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    CAS  Google Scholar 

  • Boissard CIR, Bourban PE, Plummer CJG, Neagu RC, Månson JAE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cellular Plast 48(5):445–458

    CAS  Google Scholar 

  • Bulian F, Graystone JA (2009) Properties of wood coatings-testing and characterisation. In: Bulian F, Graystone JA (eds) Wood coatings. Elsevier, Amsterdam, pp 155–194

    Google Scholar 

  • Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as toughening agent in polylactic acid. J Appl Polym Sci 126:448–457

    Google Scholar 

  • Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibers: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16:983–987

    CAS  Google Scholar 

  • Charani PR, Firouzabadi MD, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740

    Google Scholar 

  • Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899

    CAS  Google Scholar 

  • Cheng DC (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25:542–554

    CAS  Google Scholar 

  • Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417

    PubMed Central  PubMed  Google Scholar 

  • Cho SY, Park HH, Yun YS, Jin HJ (2013) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21(5):529–533

    CAS  Google Scholar 

  • Cobut A, Sehaqui H, Berglund LA (2014) Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. Bioresources 9(2):3276–3289

    Google Scholar 

  • Cristobal C, Encarnacion R, Ignacio B, Maria JN, Eulogio C (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429

    Google Scholar 

  • Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056

    CAS  Google Scholar 

  • Das M, Chakraborty D (2007) Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips-novolac composites. Polym Compos 28:57–60

    CAS  Google Scholar 

  • Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo-novolac composites. J Appl Polym Sci 100:238–244

    CAS  Google Scholar 

  • Dealy M, Wissbrun KF (1999) Melt rheology and its role in plastic processing theory and application. Kluwer, Dordrecht

    Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154

    CAS  Google Scholar 

  • Dhont JKG, Briels WJ (2003) Viscoelasticity of suspensions of long, rigid rods. Colloid Surf A 213:131–156

    CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188

    CAS  Google Scholar 

  • Diotallevi F, Mulder B (2007) The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys J 92:2666–2673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318

    CAS  PubMed  Google Scholar 

  • Duan X, Xu J, He B, Li J, Sun Y (2011) Preparation and rheological properties of cellulose/chitosan homogeneous solution in ionic liquid. Bioresources 6(4):4640–4651

    CAS  Google Scholar 

  • Duanmu J, Gamstedt EK, Rosling A (2012) Bulk composites from microfibrillated cellulose-reinforced thermoset starch made from enzymatically degraded allyl glycidyl ether-modified starch. J Compos Mater 46:3201–3208

    CAS  Google Scholar 

  • Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    CAS  PubMed  Google Scholar 

  • Dufresne A (2012) Nanocellulose from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Google Scholar 

  • Ferreira AM, Carvalho AJF (2014) TPS nanocomposite reinforced by MFC by melting process. Materials Research (in press)

    Google Scholar 

  • Fortunato G, Zimmermann T, Lübben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer-sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584

    CAS  Google Scholar 

  • Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482

    CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isodai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583

    CAS  Google Scholar 

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois Ph (2011) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538

    CAS  Google Scholar 

  • Goldsmith HL, Mason SG (1967) The microrheology of dispersions. In: Eirich FR (ed) Rheology: theory and applications, vol 4. Academic Press, New York, pp 85–250

    Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibtrils: preparation and rheological properties. Polymer 45:1569–1575

    Google Scholar 

  • Grüneberger F, Kunniger T, Zimmermann T, Arnold M (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21:1313–1326

    Google Scholar 

  • Haavisto S, Liukkonen J, Jäsberg A, Koponen A, Lille M, Salmela J (2011) Laboratory-scale pipe rheometry: a study of microfibrillated cellulose suspensions. Proc Papercon 2011:704–717

    Google Scholar 

  • Haavisto S, Koponen A, Salmela J (2014) New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography. Front Chem 27:1–6

    Google Scholar 

  • Habibi Y, Vignon MR (2007) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15(1):177–185

    Google Scholar 

  • Han SO, Son WK, Youk JH, Park WH (2008) Electrospinning of ultrafine cellulose fibers and fabrication of poly(butylene succinate) biocomposites reinforced by them. J Appl Polym Sci 107(3):1954–1959

    CAS  Google Scholar 

  • Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P (2011) Electrospinning of cellulose nanofibers from ionic liquids: The effect of different cosolvents. J Appl Polym Sci 125:1901–1909. doi:10.1002/app.36323

    Google Scholar 

  • Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46:1732–1740

    CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillat cellulose: morphology and accessibility. J Appl Polym Sci Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hill RJ (2008) Elastic modulus of microfibrillar cellulose gels. Biomacromolecules 9:2963–2966

    CAS  PubMed  Google Scholar 

  • Hlisnikovská K, Järnström L (2011) Polymer adsorption on nano fibrillar cellulose and its effects on suspension rheology. TAPPI international conference on nanotechnology for renewable materials

    Google Scholar 

  • Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspension: a review of effects of hydrodynamic shear and polyelectrolyte. Bioresources 2:296–331

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  • Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    CAS  Google Scholar 

  • Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76

    CAS  Google Scholar 

  • Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6(2):1242–1250

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi MM, Davoodi Makinejad M, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

    CAS  Google Scholar 

  • Jowkarderis L, Van de Ven TGM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 21:2511–2517

    CAS  Google Scholar 

  • Karppinen A, Vesterinen AH, Saarinen T, Inen PP, Seppälaä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390

    CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819

    CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites bades on thermoplastic startch and steam exploded cellulose nanofibrils from whear straw. Carbohydr Polym 63:337–345

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature- based materials. Angew Chem Int Ed 50(24):5438–5466

    CAS  Google Scholar 

  • Kopania E, Wietecha J, Ciechańska D (2012) Studies on isolation of cellulose fibres from waste plant biomass. Fibers Text East Eur 6B(96):167–172

    Google Scholar 

  • Korhonen M, Sorvari A, Saarinen T, Seppälä J, Laine J (2014) Deflocculation of cellulosic suspensions with anionic high molecular weight polyelectrolytes. Bioresources 9:3550–3570

    CAS  Google Scholar 

  • Kumar H, Siddaramaiah (2005) Study of chemical and tensile properties of polyurethane and polyurethane/polyacrylonitrile coated bamboo fibers. J Reinf Plast Compos 24(2):209–213

    CAS  Google Scholar 

  • Kumar H, Siddaramaiah, Roopa S (2005) Chemical and tensile properties of unsaturated polyester and polyacrylonitrile semi-interpenetrating polymer network coated bamboo fibers. J Reinf Plast Compos 24(2):215–218

    CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University, New York

    Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    CAS  PubMed  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Composites A 37:80–91

    CAS  Google Scholar 

  • Lemahieu L, Bras J, Tiquet P, Augier S, Dufresne A (2011) Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE) process. Macromol Mater Eng 296(11):984–991

    CAS  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    CAS  Google Scholar 

  • Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) Synthesis of polycaprolactonegrafted microfibrillated cellulose for use in novel bionanocomposites -Influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433

    Google Scholar 

  • Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) Synthjesis of plycaprolactone-grafted microfibrillated cellulose for use in novel biocomposites. ACS Appl Mater Interfaces 3:1426–1433

    PubMed  Google Scholar 

  • Loranger E, Piché AO, Daneault C (2012) Influence of high shear dispersion on the production of cellulose nanofibers by ultrasound-assisted TEMPO-oxidation of kraft pulp. Nanomaterials 2:286–297

    CAS  Google Scholar 

  • Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions: role of polymeric additives. Food Hydrocoll 15:25–32

    CAS  Google Scholar 

  • Lu J, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746

    Google Scholar 

  • Mabrouk AB, Magnin A, Belgacem MN, Boufi S (2011) Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Comp Sci Tech 71:818–827

    Google Scholar 

  • Martinez DG, Stading M, Hermansson AM (2012) Correlation between viscoelasticity and microstructure of a hierarchical soft composite based on nanocellulose and carrageenan. Ann Trans Nord Rheol Soc 20:117–121

    CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009a) Current trends in suspension rheology. J Non-Newton Fluid Mech 157:147–150

    CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009b) Thixotropy. Adv Colloid Interface Sci 147–148:214–227

    PubMed  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, New York

    Google Scholar 

  • Mi Y, Chen X, Guo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64:1267–1273

    CAS  Google Scholar 

  • Missoum K, Belgacem N, Krouit M, Martin C, Tapin-Lingua S, Bras J (2010) Influence of fibrillation degree and surface grafting of microfibrillated cellulose on their rheological behavior in aqueous suspension. TAPPI Nanotechnology conference for the forest product industry

    Google Scholar 

  • Miyauchi M, Miao J, Simmons TJ, Lee JW, Doherty TV, Dordick JS, Linhardt RJ (2010) Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromolecules 11(9):2440–2445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moberg T, Rigdahl M, Stading M, Bragd EL (2014) Extensional viscosity of microfibrillated cellulose suspensions. Carbohydr Polym 102:409–412

    CAS  PubMed  Google Scholar 

  • Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312

    CAS  Google Scholar 

  • Murali K, Rao M, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77:288–295

    Google Scholar 

  • Naderi A, Lindström T (2014) Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21:3507–3514. doi:10.1007/s10570–014-0394–0

    CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571

    CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Comp Sci Technol 69:1293–1297

    CAS  Google Scholar 

  • Nechita P, Panaitescu DM (2013) Improving the dispersibility of cellulose microfibrillated structures in a polymer matrix by controlling drying conditions and chemical surface modifications. Cell Chem Technol 47:711–719

    CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439

    CAS  PubMed  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:46–52

    Google Scholar 

  • Nguyen HD, Mai TT, Nguyen NB, Dang TD, Le ML, Dang TT, Tran VM (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016(9p)

    Google Scholar 

  • Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos A 35:377–383

    Google Scholar 

  • Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A 40:469–475

    Google Scholar 

  • Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin–spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694

    CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    CAS  PubMed  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102. doi: 10.1007/s10570–011-9630-z

    Google Scholar 

  • Peng Y, Han Y, Gardner DJ (2012) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44:1–14

    Google Scholar 

  • Phiriyawirut M, Chotirat N, Phromsiri S, Lohapaisarn I (2010) Preparation and properties of natural rubber-cellulose microfibril nanocomposite films. Adv Mater Res 93–94:328–331

    Google Scholar 

  • Plummer CJ, Choo CK, Boissard C, Bourban P, Manson JA (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci 291:2203–2211

    CAS  Google Scholar 

  • Puisto A, Illa X, Mohtaschemi M, Alava M (2012) Modeling the rheology of nanocellulose suspensions. Nord Pulp Paper Res J 27:277–281

    CAS  Google Scholar 

  • Qi H, Sui X, Yuan J, Wei Y, Zhang L (2010) Electrospinning of cellulose-based fibers from NaOH/Urea aqueous system. Macromol Mater Eng 295(8):695–700

    CAS  Google Scholar 

  • Rajulu AV, Rao BR, Reddy RL, Sanjeevi R (2001) Chemical resistance and tensile properties of epoxy/polycarbonate blend coated bamboo fibres. J Reinf Plast Compos 20(4):335–340

    CAS  Google Scholar 

  • Rastogi VK, Samyn P (2014) Novel production method for in-situ hydrophobization of a microfibrillated cellulose network. Mater Lett 120:196–199

    CAS  Google Scholar 

  • Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567

    CAS  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behavior. Cellulose 19(3):647–659

    CAS  Google Scholar 

  • Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppala J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21:1261–1275

    CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    CAS  PubMed  Google Scholar 

  • Salmela J, Haavisto S, Koponen A, Ja ¨sberg A, Kataja M (2013) Rheological characterization of micro-fibrillated cellulose fiber suspension using multi scale velocity profile measurements. Advances in pulp and paper research, 15th fundamental research symposium, Cambridge, England

    Google Scholar 

  • Saxena M, Gowri VS (2003) Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polym Compos 24(3):428–436

    CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nano-crystalline nellulose aqueous suspensions. Langmuir 28:17124–17133

    CAS  PubMed  Google Scholar 

  • Shumigin D, Tarasova E, Krumme A, Meier P (2011) Rheological and mechanical properties of poly(lactic) acid/cellulose and LDPE/cellulose composites. Mater Sci 17(1):32–37

    Google Scholar 

  • Siddiqui N, Mills RH, Gardner DJ, Bousfield D (2011) Production and characterization of cellulose nanofibers from wood pulp. J Adhes Sci Technol 25(6–7):709–721

    CAS  Google Scholar 

  • Siqueira G, Tadokoro SK, Mathew AP, Oksman K (2010) Carrot nanofibers and nanocomposites applications. 7th international symposium on natural polymers and composites, Gramado, Brazil

    Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    CAS  Google Scholar 

  • Šutka A, Kukle S, Gravitis J (2013) An environmentally friendly method for microfibrillated cellulose extraction from hemp. In: Proceedings of 10th international conference of young scientists on energy issues, Lithuania, Kaunas, 29–31 May 2013. (Kaunas: Lithuanian Energy Institute, 2013, pp. 81–86. ISSN 1822–7554)

    Google Scholar 

  • Suzuki K, Sato A, Okumura H, Hushimoto T, Nakagito AN, Yano H (2014) Novel high-strength microfibrillated cellulose reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21:507–518

    CAS  Google Scholar 

  • Taipele T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Google Scholar 

  • Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of ‘‘Green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A Solid Mech Mater Eng 47:551–555

    Google Scholar 

  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349

    CAS  PubMed  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    CAS  Google Scholar 

  • Tingaut P, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose, In: Nanocomposites, Editor: Abbass Hashim, Editions InTech (ISBN 978-953-308-55-0)

    Google Scholar 

  • Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    CAS  Google Scholar 

  • Wicaksono R, Syamsy K, Yuliasih I, Nasir M (2013) Cellulose nanofibers from cassava bagasse: characterization and application on tapioca film. Chem Mater Res 3:79–87

    Google Scholar 

  • Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres: a review of theory and experiments. Colloid Surf A 137:355–372

    CAS  Google Scholar 

  • Wiklund J, Stading M (2006) Application of in-line ultrasound Doppler based UVP-PD method to concentrated model and industrial suspensions. In: Proceedings of 5th international symposium on ultrasonic doppler methods for fluid mechanics and fluid engineering, Zürich, 12–14 Sept 2006, pp 145–148

    Google Scholar 

  • Zepic V, Fabjan E, Kasynic M, Korosec RC, Hancic A, Oven P, Perse LS (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose. Holzforschung 68:657–667

    CAS  Google Scholar 

  • Zhao N, Mark LH, Zhu C, Park CB, Li Q, Glenn R, Thompson TR (2014) Foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents. Ind Eng Chem Res 53:11962–11972

    CAS  Google Scholar 

  • Zhou C, Wu Q, Zhang Q (2011) Dynamic rheological studies of in-situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255

    CAS  Google Scholar 

  • Zhu AJ, Sternstein SS (2003) Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics. Comp Sci Tech 63:1113–1126

    CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    CAS  Google Scholar 

  • Zirnsak MA, Hur DU, Boger DV (1994) Normal stresses in fibre suspensions. J Non-Newtonian Fluid Mech 54:153–193

    CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Robert Bosch Foundation in the framework of Sustainable Use of Natural Materials 2011–2016 (“Foresnab”-project) and Junior professoren programm Baden-Württemberg 2012–2015 (“NaCoPa”-project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Samyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taheri, H., Samyn, P. (2015). Rheological Properties and Processing of Polymer Blends with Micro- and Nanofibrillated Cellulose. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_13

Download citation

Publish with us

Policies and ethics