Skip to main content
Log in

Dissolution of cellulose in aqueous NaOH/urea solution: role of urea

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Urea can improve the solubility and stability of cellulose in aqueous alkali solution, while its role has not come to a conclusion. To reveal the role of urea in solution, NMR was introduced to investigate the interaction between urea and the other components in solution. Results from chemical shifts and longitudinal relaxation times show that: (1) urea has no strong direct interaction with cellulose as well as NaOH; (2) urea does not have much influence on the structural dynamics of water. Urea may play its role through van der Waals force. It may accumulate on the cellulose hydrophobic region to prevent dissolved cellulose molecules from re-gathering. The driving force for the self-assembly of cellulose and urea molecules might be hydrophobic interaction. In the process of cellulose dissolution, OH breaks the hydrogen bonds, Na+ hydrations stabilize the hydrophilic hydroxyl groups and urea stabilizes the hydrophobic part of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almarza J, Rincon L, Bahsas A, Brito F (2009) Molecular mechanism for the denaturation of proteins by urea. Biochemistry 48(32):7608–7613

    Article  CAS  Google Scholar 

  • Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P-O, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19(1):1–12

    Article  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromol Biosci 5(6):539–548. doi:10.1002/mabi.200400222

    Article  CAS  Google Scholar 

  • Cai J, Liu YT, Zhang LN (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44(21):3093–3101. doi:10.1002/polb.20938

    Article  CAS  Google Scholar 

  • Cai J, Zhang LN, Chang CY, Cheng GZ, Chen XM, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8(10):1572–1579. doi:10.1002/cphc.200700229

    Article  CAS  Google Scholar 

  • Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53(5):1124–1130

    Article  CAS  Google Scholar 

  • Canchi DR, Paschek D, García AE (2010) Equilibrium study of protein denaturation by urea. J Am Chem Soc 132(7):2338–2344

    Article  CAS  Google Scholar 

  • Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128(2–3):95–104

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 degrees C and the limit of cellulose dissolution. Biomacromolecules 8(7):2282–2287. doi:10.1021/bm0702399

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15(3):361–370. doi:10.1007/s10570-007-9185-1

    Article  CAS  Google Scholar 

  • Finer E, Franks F, Tait M (1972) Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc 94(13):4424–4429

    Article  CAS  Google Scholar 

  • Frank HS, Franks F (1968) Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys 48:4746

    Article  CAS  Google Scholar 

  • Frank HS, Wen WY (1957) Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc 24:133–140

    Article  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598

    Article  CAS  Google Scholar 

  • Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohyd Polym 79(3):614–619

    Article  CAS  Google Scholar 

  • Hayashi Y, Katsumoto Y, Omori S, Kishii N, Yasuda A (2007) Liquid structure of the urea-water system studied by dielectric spectroscopy. J Phys Chem B 111(5):1076–1080

    Article  CAS  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohyd Polym 89(4):1298–1300

    Google Scholar 

  • Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20(1):97–103

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kresheck GC, Scheraga HA (1965) The temperature dependence of the enthalpy of formation of the amide hydrogen bond; the urea model1. J Phys Chem 69(5):1704–1706

    Article  CAS  Google Scholar 

  • Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 175–188

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH–thiourea aqueous system at low temperature. Macromol Chem Phys 208(21):2359–2366

    Article  CAS  Google Scholar 

  • Masunov A, Dannenberg JJ (2000) Theoretical study of urea and thiourea. 2. Chains and ribbons. J Phys Chem B 104(4):806–810. doi:10.1021/jp993078e

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587

    Article  CAS  Google Scholar 

  • Philipp B, Heinze T, Heinze U, Wgaenknecht W (1998) Comprehensive cellulose chemistry volume I, fundamentals and analytical methods. Wiley-VCH, Weinheim

  • Qi HS, Yang QL, Zhang LN, Liebert T, Heinze T (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18(2):237–245. doi:10.1007/s10570-010-9477-8

    Article  CAS  Google Scholar 

  • Rezus Y, Bakker H (2006) Effect of urea on the structural dynamics of water. Proc Natl Acad Sci 103(49):18417–18420

    Article  CAS  Google Scholar 

  • Rusa CC, Tonelli AE (2000) Separation of polymers by molecular weight through inclusion compound formation with urea and alpha-cyclodextrin hosts. Macromolecules 33(5):1813–1818. doi:10.1021/ma991883l

    Article  CAS  Google Scholar 

  • Shimizu S (2011) The effect of urea on hydrophobic hydration: preferential interaction and the enthalpy of transfer. Chem Phys Lett 517(1):76–79

    Article  CAS  Google Scholar 

  • Stokes R (1967) Thermodynamics of aqueous urea solutions. Aust J Chem 20(10):2087–2100

    Article  CAS  Google Scholar 

  • Stumpe MC, Grubmüller H (2008) Polar or apolar—the role of polarity for urea-induced protein denaturation. PLoS Comput Biol 4(11):e1000221

    Article  Google Scholar 

  • Symons M (1975) Water structure and hydration. Philos Trans R Soc Lond B Biol Sci 272(915):13–28

    Article  CAS  Google Scholar 

  • Vasanthan N, Shin ID, Tonelli AE (1996) Structure, conformation, and motions of poly (ethylene oxide) and poly (ethylene glycol) in their urea inclusion compounds. Macromolecules 29(1):263–267

    Article  CAS  Google Scholar 

  • Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20(2):613–621

    Google Scholar 

  • Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15(6):789–796

    Article  CAS  Google Scholar 

  • Yang QL, Qi HS, Lue A, Hu K, Cheng GZ, Zhang LN (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohyd Polym 83(3):1185–1191. doi:10.1016/j.carbpol.2010.09.020

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B Polym Phys 40(14):1521–1529

    Article  CAS  Google Scholar 

  • Zhao X, Chen Y, Jiang X, Shang Y, Zhang L, Gong Q, Zhang H, Wang Z, Zhou X (2013) The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution. J Therm Anal Calorim 111(1):891–896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, 2010CB732203) and the Special Project on Development of National Key Scientific Instruments and Equipments of China (2011YQ120035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Hu or Gongzhen Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, B., Zhao, P., Hu, K. et al. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21, 1183–1192 (2014). https://doi.org/10.1007/s10570-014-0221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0221-7

Keywords

Navigation