Skip to main content
Log in

Drying cellulose nanofibrils: in search of a suitable method

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Increasing research activity on cellulose nanofibril-based materials provides great opportunities for novel, scalable manufacturing approaches. Cellulose nanofibrils (CNFs) are typically processed as aqueous suspensions because of their hydrophilic nature. One of the major manufacturing challenges is to obtain dry CNFs while maintaining their nano-scale dimensions. Four methods were examined to dry cellulose nanocrystal and nanofibrillated cellulose suspensions: (1) oven drying, (2) freeze drying (FD), (3) supercritical drying (SCD), and (4) spray-drying (SD). The particle size and morphology of the CNFs were determined via dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and morphological analysis. SCD preserved the nano-scale dimensions of the cellulose nanofibrils. FD formed ribbon-like structures of the CNFs with nano-scale thicknesses. Width and length were observed in tens to hundreds of microns. SD formed particles with a size distribution ranging from nanometer to several microns. Spray-drying is proposed as a technically suitable manufacturing process to dry CNF suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beecher JF (2007) Organic materials: wood, trees and nanotechnology. Nat Nanotechnol 2:466–467

    Article  CAS  Google Scholar 

  • Bloch J (2011) UMaine to build nation’s only cellulose nanofibrils pilot plant. http://umaine.edu/news/blog/2011/10/28/umaine-to-build-nation’s-only-cellulose-nanofibrils-pilot-plant/

  • Brinker CJ, Scherer GW (1990) Drying. In: Brinker CJ, Scherer GW (eds) Sol-gel science: the physics and chemistry of sol-gel processing, 1st edn. Academic Press Limited, London, pp 453–513

    Google Scholar 

  • Bruttini R, Grosser OK, Liapis AI (2001) Energy analysis for the freezing stage of the freeze drying process. Dry Technol 19:2303–2314

    Article  CAS  Google Scholar 

  • Clark JD’A (1985) Fibrillation and fiber bonding. In: Clark JD’A (ed) Pulp technology and treatment for paper, 2nd edn. Miller Freeman Publications, San Francisco, pp 160–180

    Google Scholar 

  • Desobry SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-Carotene encapsulation and preservation. J Food Sci 62:1158–1162

    Article  CAS  Google Scholar 

  • Dombrowski N, Johns WR (1963) The aerodynamic instability and disintegration of viscous liquid sheets. Chem Eng Sci 18:203–214

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putanus J, Heux L, Debreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Filkova I, Huang LX, Mujumdar AS (2007) Industrial spray drying systems. In: Mujumdar AS (ed) Hankbook of industrial drying, 3rd edn. CRC Press, New York, pp 215–254

    Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hardy WL (1955) Costs process and construction-spray drying cost analysis shows labor is largest item, utilizes constant. Ind Eng Chem 47:73A–74A

    Article  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface science. CRC Press, New York

    Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibrils aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Hunter RJ (2001) Foundations of colloid science. Oxford Univ. Press, Oxford

    Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426:611–612

    Article  CAS  Google Scholar 

  • Jeronimidis G (1980) Wood, one of nature’s challenging composites. Symp Soc Exp Biol 34:169–182

    CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume 1, fundamentals and analytical methods. Wiley-VCH, New York

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Lawson CL, Hanson RJ (1995) Solving least squares problems. Society for industrial and applied mathematics (SIAM), Philadelphia

    Book  Google Scholar 

  • Liapis AI, Pikal MJ, Bruttini R (1996) Research and development needs and opportunities in freeze-drying. Dry Technol 14:1265–1300

    Article  CAS  Google Scholar 

  • Lindstrom T, Wagberg L, Larsson T (2005) On the nature of joint strength in paper- a review of dry and wet strength resins used in paper manufacturing. In: Proceedings of 13th fundamental research symposium, Cambridge, Pira International, Leatherhead

  • Lyne LM, Galay W (1954) Studies in the fundamentals of wet web strength. Tappi 37(12):698–704

    CAS  Google Scholar 

  • McKenzie AW (1984) The structure and properties of paper. Part XXI: the diffusion theory of adhesion applied to interfiber bonding. Appita 37(7):580–583

    CAS  Google Scholar 

  • Mie G (1908) Beitrage zur optic truber medien, speziell kolloidaler metallosungen. Ann Physik 4:377–445

    Article  Google Scholar 

  • Moon RJ, Marini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mujumdar AS, Devahastin S (2000) Fundamental principles of drying. In: Devahastin S (ed) Mujumdar’s practical guide to industrial drying. Exergex Vorp, Montreal, pp 1–22

    Google Scholar 

  • Nakamura K, Hatakeyma T, Hatakeyma H (1981) Studies on bound water of cellulose by differential scanning calorimetry. J Textile Inst 72(9):607–613

    Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I alpha from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • O’Connor B (2011) Ensuring the safety of manufactured nanocrystalline cellulose: a risk assessment under Canada’s new substances notification regulations. http://www.tappi.org/content/events/11nano/paper/11Nano03.pdf. Accessed 21 June 2011

  • Pakowski Z (2007) Modern methods of drying nanomaterials. Transp Porous Med 66:19–27

    Article  Google Scholar 

  • Pelton R (1993) A model of the external surface of wood pulp fibers. Nordic Pulp Paper Res J 8(1):113–119

    Article  CAS  Google Scholar 

  • Quinn JJ (1965) The economics of spray drying. Ind Eng Chem 57:35–37

    Article  CAS  Google Scholar 

  • Scherer GW (1990) Theory of drying. J Am Ceram Sco 73:3–14

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Thimm JC, Burritt DJ, Ducker WA, Melton LD (2000) Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212:25–32

    Article  CAS  Google Scholar 

  • Thybo P, Hovgaard L (2008) Droplet size measurements for spray dryer scale-up. Pharm Dev Technol 13:93–104

    Article  CAS  Google Scholar 

  • Vartiaine J, Pohler T, Sirola K, Pylkkanen L, Alenius H, Hokkinen J, Tapper U, Lahtine P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  Google Scholar 

  • Wang B, Huang LX, Mujumdar AS (2007) Drying of nanosize products. In: Mujumdar AS (ed) Hankbook of industrial drying, 3rd edn. CRC Press, New York, pp 713–727

    Google Scholar 

  • Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the US Army Corps of Engineers, Engineering R&D Center, and the Maine Agricultural and Forestry Experiment Station McIntire-Stennis Project ME09615-06 for financial support. The content and information does not necessarily reflect the position of the funding agencies. Maine Agricultural and Forest Experiment Station Publication Number 3242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Gardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Gardner, D.J. & Han, Y. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19, 91–102 (2012). https://doi.org/10.1007/s10570-011-9630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9630-z

Keywords

Navigation