Skip to main content
Log in

Self-reinforced cellulose nanocomposites

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A self-reinforced cellulosic material was produced exclusively from regenerated cellulose microcrystals. The level of reinforcement was controlled by tailoring the crystallinity of cellulose by controlling the dissolution of microcrystalline cellulose (MCC) before its regeneration process. After the cellulose regeneration a self-reinforced material was obtained in which cellulose crystals reinforced amorphous cellulose. This structure was produced by dissolution of MCC in a non-derivatising cosolvent N,N-dimethylacetamide/LiCl followed by subsequent cellulose regeneration in distilled H2O. The reduction of the overall crystallinity of self-reinforced regenerated cellulose was dependent on the dissolution time of the cellulose precursor. The crystallinity of regenerated cellulose was determined by wide angle X-ray diffraction. A reduction in crystal size from microcrystalline cellulose to regenerated cellulose was observed with increasing dissolution time in DMAc/LiCl cosolvent. The reduction in degree of crystallinity of regenerated cellulose led to a decrease in the tensile mechanical performance and thermal stability of the regenerated cellulose. The controlled dissolution of microcrystalline cellulose resulted in the modification of structural, physical, thermal properties and moisture uptake behaviour of regenerated cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akerholm M, Hinterstoisser B, Salmen L (2004) Characterization of the crystalline structure of cellulose using static and dynamic ft-ir spectroscopy. Carbohydr Res 339(3):569–578

    Article  CAS  Google Scholar 

  • Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley-Interscience, New York

    Google Scholar 

  • Boerstoel H, Maatman H, Westerink J, Koenders B (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42(17):7371–7379

    Article  CAS  Google Scholar 

  • Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci A-2 Polym Phys 7(10):1761–1773

    Article  CAS  Google Scholar 

  • Brown R (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci A Polym Chem 42(3):487–495

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Structural ftir analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40(9):2229–2234

    Article  CAS  Google Scholar 

  • Dawsey T, McCormick C (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. Polym Rev 30:405–440

    Article  Google Scholar 

  • Duchemin BJC, Mathew AP, Oksman K (2009a) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos Part A 40(12):2031–2037

    Article  Google Scholar 

  • Duchemin BJC, Newman RH, Staiger MP (2009b) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69(7–8):1225–1230

    Article  CAS  Google Scholar 

  • Duchemin BJCZ, Newman RH, Staiger MP (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14(4):311–320

    Article  CAS  Google Scholar 

  • El-Wakil NA, Hassan ML (2008) Structural changes of regenerated cellulose dissolved in fetna, naoh/thiourea, and nmmo systems. J Appl Polym Sci 109(5):2862–2871

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46(23):10,221–10,225

    Article  CAS  Google Scholar 

  • Gindl W, Schoberl T, Keckes J (2006) Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Appl Phys A: Mater Sci Process 83(1):19–22

    Article  CAS  Google Scholar 

  • Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in peg/naoh aqueous solution. Carbohydr Polym 79(3):614–619

    Article  CAS  Google Scholar 

  • Hong YK, Chung KH, Lee WS (1998) Structure of regenerated cellulose fibers from DMAc/LiCl solution. Text Res J 68(1):65–69

    Article  CAS  Google Scholar 

  • Hurtubise FG, Krassig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique. Anal Chem 32(2):177–181

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose a masterpiece of nature’s arts. J Mater Sci V35(2):261–270

    Article  Google Scholar 

  • Ishii D, Tatsumi D, Matsumoto T, Murata K, Hayashi H, Yoshitani H (2006) Investigation of the structure of cellulose in licl/dmac solution and its gelation behavior by small-angle X-ray scattering measurements. Macromol Biosci 6(4):293–300

    Article  CAS  Google Scholar 

  • Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47(14):5097–5107

    Article  CAS  Google Scholar 

  • Kondo T, Togawa E, Brown R (2001) “Nematic ordered cellulose”: a concept of glucan chain association. Biomacromolecules 2(4):1324–1330

    Article  CAS  Google Scholar 

  • Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113(46):20,097–20,107

    Article  CAS  Google Scholar 

  • Liu NA, Fan WC (1998) The kinetic methods for which no assumption about the order of reaction is needed. Fire Mater 22(5):219–220

    Article  CAS  Google Scholar 

  • Matsumoto T, Tatsumi D, Tamai N, Takaki T (2002) Solution properties of celluloses from different biological origins in licl—dmac. Cellulose 8(4):275–282

    Article  Google Scholar 

  • Matsumura H, Glasser WG (2000) Cellulosic nanocomposites. ii. Studies by atomic force microscopy. J Appl Polym Sci 78(13):2254–2261

    Article  CAS  Google Scholar 

  • Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. i. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78(13):2242–2253

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA (1986) Derivation of cellulose in lithium chlroride and n,n-dimethylacetamide solutions. Polymer Preprints, Division of Polymer Chemistry, Am Chem Soc 27(2):91–92

    CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and n,n-dimethylacetamide. Macromolecules 18(12):2394–2401

    Article  CAS  Google Scholar 

  • Momoh M, Eboatu AN, Kolawole EG, Horrocks AR (1996) Thermogravimetric studies of the pyrolytic behaviour in air of selected tropical timbers. Fire Mater 20(4):173–181

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part i. Spectra of lattice types i, ii, iii and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9):2712–2716

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687

    Article  CAS  Google Scholar 

  • Ouajai S, Shanks R (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stabil 89:327–335

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10(6):1597–1602

    Article  CAS  Google Scholar 

  • Ramos L, Assaf J, Seoud OE, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/n,n-dimethylacetamide solvent system. Biomacromolecules 6(5):2638–2647

    Article  CAS  Google Scholar 

  • Richter U, Krause T, Schempp W (1991) Untersuchungen zur alkalibehandlung von cellulosefasern. teil 1. infrarotspektroskopische und rntgenographische beurteilung der nderung des ordnungszustandes. Angewandte Makromolekulare Chemie 185(1):155–167

    Article  Google Scholar 

  • Saafan AA, Habib AM (1987) Influence of changes in fine structure on thermal properties of cotton fibres. J Therm Anal Calorim 32(5):1345–1354

    Article  Google Scholar 

  • Segal L, Creely J, Martin JAE, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Nishino T, Peijs T (2009a) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A 40(4):321–328

    Article  Google Scholar 

  • Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009b) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16(3):435–444

    Article  CAS  Google Scholar 

  • Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63(6):861–869

    Article  CAS  Google Scholar 

  • Striegel A (1997) Theory and applications of dmac/licl in the analysis of polysaccharides. Carbohydr Polym 34:267–274

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13(5):509–517

    Article  CAS  Google Scholar 

  • Teodorovic M, Majdanac L, Cosic D, Nesovic V (1992) The thermal behaviour of cellulose samples with different structure. J Therm Anal Calorim 38(4):907–916

    Article  CAS  Google Scholar 

  • Turbak AF (1984) Recent developments in cellulose solvent systems. Tappi J 67(1):94–96

    CAS  Google Scholar 

  • Wang W, Sain M, Cooper P (2006) Study of moisture absorption in natural fiber plastic composites. Compos Sci Technol 66(3–4):379–386

    Article  CAS  Google Scholar 

  • Woodings C (1995) The development of advanced cellulosic fibres. Int J Biol Macromol

  • Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16(2):217–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Challenging Engineering Programme (EP/E007538/1) of the UK Engineering and Physical Sciences Research Council (EPSRC) for providing the financial support. Great regards are directed to the Polymer and Composite Engineering (PaCE) group members for their advice and constructive exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bismarck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, A., Bismarck, A. Self-reinforced cellulose nanocomposites. Cellulose 17, 779–791 (2010). https://doi.org/10.1007/s10570-010-9427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9427-5

Keywords

Navigation