Skip to main content
Log in

Hydrolysis of cellulose by the heteropoly acid H3PW12O40

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The potential of heteropoly acid H3PW12O40 to catalyze the hydrolysis of cellulose to glucose under hydrothermal conditions was explored. This technology could contribute to sustainable societies in the future by using cellulose biomass. A study to optimize the reaction conditions, such as the amount of catalyst, reaction time, temperature, and the amount of cellulose used, was performed. A remarkably high yield of glucose (50.5%) and selectivity higher than 90% at 453 K for 2 h with a mass ratio of cellulose to H3PW12O40 of 0.42 were achieved. This was attributed to the high hydrothermal stability and the excellent catalytic properties, such as the strong Brønsted acid sites. This homogeneous catalyst can be recycled for reuse by extraction with diethyl ether. The results illustrate that H3PW12O40 is an environmentally benign acid catalyst for the hydrolysis of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  • Cavani F (1998) Heteropolycompound-based catalysts: a blend of acid and oxidizing properties. Catal Today 41:73–86

    Article  CAS  Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  • Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1:1–8

    Article  CAS  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2008) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626

    Article  CAS  Google Scholar 

  • Dhepe PL, Fukuoka A (2008) Cellulose conversion under heterogeneous catalysis. Chem Sus Chem 1:969–975

    CAS  Google Scholar 

  • Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Springer, Berlin

    Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’ Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  • Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  • Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugaralcohols. Angew Chem Int Ed 45:5161–5163

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  • Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of β-1,4-Glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  • Lefebvre F, Liu Cai FX, Auroux A (1994) Microcalorimetric study of the acidity of tungstic heteropolyanions. J Mater Chem 4:125–131

    Article  CAS  Google Scholar 

  • Li CZ, Zhao ZBK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850

    Article  CAS  Google Scholar 

  • Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 46:7636–7639

    Article  CAS  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W et al (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–292

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mok WS, Antal MJ, Sazbo P, Varhergyi G, Zelei B (1992) Formation of charcoal from biomass in a sealed reactor. Ind Eng Chem Res 31:94–100

    Article  CAS  Google Scholar 

  • Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  CAS  Google Scholar 

  • Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  CAS  Google Scholar 

  • Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    Article  CAS  Google Scholar 

  • Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum (V1) and tungsten (V1) compounds related to the keggin structure. Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52

    Article  CAS  Google Scholar 

  • Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890

    Article  CAS  Google Scholar 

  • Sheldon R, Wallau M, Arends I, Schuchardt U (1998) Heterogeneous catalysts for liquid-phase oxidations: philosopher’s stones or Trojan horses? Acc Chem Res 31:485–493

    Article  CAS  Google Scholar 

  • Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of brønsted and lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11:1627–1632

    Article  CAS  Google Scholar 

  • Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793

    Article  CAS  Google Scholar 

  • Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun: 5363–5365

  • Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39:2817–2825

    Article  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  • Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113:3181–3188

    Article  CAS  Google Scholar 

  • Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. J Am Chem Soc 128:8714–8715

    Article  CAS  Google Scholar 

  • Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60

    Article  CAS  Google Scholar 

  • Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  • Zhao Y, Lu WJ, Wang HT (2009) Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chem Eng J 150:411–417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20871026). It was supported by the Analysis and Testing Foundation of Northeast Normal University and the major projects of Jilin Provincial Science and Technology Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Wang, J., Zhao, S. et al. Hydrolysis of cellulose by the heteropoly acid H3PW12O40 . Cellulose 17, 587–594 (2010). https://doi.org/10.1007/s10570-009-9391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9391-0

Keywords

Navigation