Skip to main content
Log in

Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated celluloses

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Three groups of cellulose II samples, 20% NaOH-treated native celluloses (M-native celluloses), commercial regenerated celluloses and those treated with 20% NaOH (M-regenerated celluloses), were subjected to dilute acid hydrolysis at 105 °C to obtain so-called leveling-off degrees of polymerization (LODP). Molecular mass parameters of the acid-hydrolyzed products were analyzed by SEC-MALLS using 1% LiCl/DMAc as an eluent. The LODP values were in the order of M-native celluloses ≅ M-regenerated celluloses > regenerated celluloses. The LODP values of M-regenerated celluloses are 1.5–1.7 times as much as those of the regenerated celluloses; the cellulose II crystallites in regenerated celluloses increase in size to the longitudinal direction by the alkali treatment and the successive acid hydrolysis at 105 °C. This increase in the longitudinal crystal sizes might primarily occur during acid hydrolysis. All the acid-hydrolyzed products had bimodal SEC elution patterns, i.e. the predominant high-molecular-mass and minor low-molecular-mass components, the latter of which corresponded to DP 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson W (1956) Level-off degree of polymerization: relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  • Chang M (1971) Folding chain model and annealing of cellulose. J Poly Sci Part C 36:343–362

    Google Scholar 

  • de Nooy AEJ, Besember AC, van Bekkum H, van Dijk JAPP, Smit JAM (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of obtained polyelectrolyte chains. Macromolecules 29:6541–6547

    Article  Google Scholar 

  • Einfeldt L, Günther W, Klemm D, Heublein B (2005) Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose 12:15–24

    Article  CAS  Google Scholar 

  • Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis, in biotechnology monographs, vol 3. Springer, Tokyo

    Google Scholar 

  • Fischer EW, Herchenroder P, Manley RSTJ, Stamm M (1978) Small-angle neutron scattering of selectively deuterated cellulose. Macromolecules 11:213–217

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Isogai A, Mutoh N, Onabe F, Usuda M (1989) Viscosity measurements of cellulose/SO2-amine-dimethylsufuloxide solution. Sen’i Gakkaishi 45:299–306

    CAS  Google Scholar 

  • Matsumoto T, Tastumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl/DMAc. Cellulose 8:275–282

    Article  CAS  Google Scholar 

  • McCormick CL, Callais A, Hutchinson BH Jr (1985) Solutions studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  • Millett MA, Morre WE, Saeman JF (1954) Preparation and properties of hydrocellulose. Ind Eng Chem 46:1493–1497

    Article  CAS  Google Scholar 

  • Nelson ML, Tripp VW (1953) Determination of the leveling-off degree of polymerization of cotton and rayon. J Poly Sci 10:577–586

    Article  CAS  Google Scholar 

  • Nickerson RF, Harble JA (1947) Cellulose intercrystalline structure. Study by hydrolytic methods. Ind Eng Chem 39:1507–1512

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Potthast A, Patel I, Schiehser S, Rosenau T (2007) Periodate and TEMPO oxidation of cellulose. Proceedings of European–Japanese workshop on cellulose and functional polysaccharides, Kyoto, 29–30 October p 29

  • Rånby BG (1952) The cellulose micells. Tappi J 35(2):53–58

    Google Scholar 

  • Schurz J, John K (1975) Long periods in native and regenerated celluloses. Cellulose Chem Technol 9:493–501

    CAS  Google Scholar 

  • Sharples A (1958) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 54:913–917

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Shibata I, Yanagisawa M, Sato T, Isogai A (2006) SEC-MALLS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose 12:305–315

    Google Scholar 

  • Shibazaki H, Kuga S, Onabe F, Brown RM Jr (1995) Acid hydrolysis behavior of microbial cellulose II. Polymer 36:4971–4976

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IV. Biomacromolecules 5:1385–1391

    Article  CAS  Google Scholar 

  • Yachi T, Hayashi J, Takai M, Shimizu Y (1983) Supermolecular structures of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci Appl Polym Symp 37:325–343

    CAS  Google Scholar 

  • Yanagisawa M, Isogai A (2005) SEC-MALLS-QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromolecules 6:1258–1265

    Article  CAS  Google Scholar 

  • Yanagisawa M, Isogai A (2007) Size exclusion chromatographic and UV-VIS absorption analyses of unbleached and bleached softwood kraft pulps using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent. Holzforschung 61:236–241

    Article  CAS  Google Scholar 

  • Yanagisawa M, Shibata I, Isogai A (2004) SEC-MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 11:169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a Grand-in-Aid for Scientific Research (Grant number 15658052) from the Japan Society for the Promotion of Science (JSPS). The authors thank Asahi Chemicals Co. Ltd. and Dr. Masahisa Wada for kindly providing Bemliese and Tencel fibers, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isogai, T., Yanagisawa, M. & Isogai, A. Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated celluloses. Cellulose 15, 815–823 (2008). https://doi.org/10.1007/s10570-008-9231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9231-7

Keywords

Navigation