Skip to main content
Log in

Xyloglucan in cellulose modification

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Xyloglucans are the principal polysaccharides coating and crosslinking cellulose microfibrills in the majority of land plants. This review summarizes current knowledge of xyloglucan structures, solution properties, and the mechanism of interaction of xyloglucans with cellulose. This knowledge base forms the platform for new biomimetic methods of cellulose surface modification with applications within the fields of textile manufacture, papermaking, and materials science. Recent advances using the enzyme xyloglucan endo-transglycosylase (XET, EC 2.4.1.207) to introduce varied chemical functionality onto cellulose surfaces are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATRP:

Atom transfer radical polymerization

CIN:

Cinnamoyl

DMAP:

4,4-Dimethylaminopyridine

DMF:

N,N-dimethylformamide

EDC:

N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide

ELISA:

Enzyme-linked immunosorbent assay

FITC:

Fluorescein isothiocyanate

INI:

Initiator

NMP:

Nitroxide-mediated polymerization

OBA:

Optical brightening agent

PCL:

Poly(ε-caprolactone)

PLLA:

Poly(l-lactic acid)

PMDETA:

N,N,N′,N′′,N′′-pentamethyldiethylenetriamine

RAFT:

Reversible addition-fragmentation chain transfer

ROP:

Ring-opening polymerization

SR:

Sulforhodamine

TKP:

Tamarind kernel powder

XET:

Xyloglucan endo-transglycosylase (EC 2.4.1.207)

XG:

Xyloglucan

XG-R:

Chemically modified xyloglucan

XG-b-PS:

Xyloglucan-poly(styrene) block co-polymer

XGO:

Xylogluco-oligosaccharide

XGO-R:

Chemically modified xylogluco-oligosaccharide

References

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    CAS  Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    CAS  Google Scholar 

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202

    CAS  Google Scholar 

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35

    CAS  Google Scholar 

  • Baba K, Sone Y, Misaki A, Hayashi T (1994) Localization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems. Plant Cell Physiol 35:439–444

    Google Scholar 

  • Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol 61:451–467

    CAS  Google Scholar 

  • Berry MJ, David PJ, Gidley MJ (2001) Conjugated polysaccharide fabric detergent and conditioning products. Patent No. US 6,225,462

  • Bollok M, Henriksson H, Kallas Å, Jahic M, Teeri TT, Enfors SO (2005) Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris. Appl Biochem Biotechnol 126:61–77

    CAS  Google Scholar 

  • Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314

    CAS  Google Scholar 

  • Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002) Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14:3073–3088

    CAS  Google Scholar 

  • Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721

    CAS  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Func Plant Biol 33:103–119

    CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    CAS  Google Scholar 

  • Buckeridge MS, Crombie HJ, Mendes CJM, Reid JSG, Gidley MJ, Vieira CCJ (1997) A new family of oligosaccharides from the xyloglucan of Hymenaea coubaril L. (Leguminosae) cotyledons. Carbohyd Res 303:233–237

    CAS  Google Scholar 

  • Burgalassi S, Chetoni P, Panichi L, Boldrini E, Saettone MF (2000) Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J Ocular Pharmacol Ther 16:497–509

    CAS  Google Scholar 

  • Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366

    CAS  Google Scholar 

  • Carambassis A, Rutland MW (1999) Interactions of cellulose surfaces: effect of electrolyte. Langmuir 15:5584–5590

    CAS  Google Scholar 

  • Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    CAS  Google Scholar 

  • Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745

    CAS  Google Scholar 

  • Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. John Wiley & Sons, Inc., Somerset, NJ, pp 52–108

    Google Scholar 

  • Chambat G, Karmous M, Costes M, Picard M, Joseleau JP (2005) Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12:117–125

    CAS  Google Scholar 

  • Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996

    CAS  Google Scholar 

  • Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38:27–37

    CAS  Google Scholar 

  • Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35

    CAS  Google Scholar 

  • Christiernin M, Henriksson G, Lindstrom ME, Brumer H, Teeri TT, Lindstrom T, Laine J (2003) The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nord Pulp Paper Res J 18:182–187

    CAS  Google Scholar 

  • Cicortas Gunnarsson L, Zhou Q, Montanier C, Nordberg Karlsson E, Brumer H, Ohlin M (2006) Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology 16:1171–1180

    Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    CAS  Google Scholar 

  • Coutinho PM, Henrissat B (2006) Carbohydrate-active enzymes server, http://afmb.cnrs-mrs.fr/CAZY/

  • Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163

    CAS  Google Scholar 

  • Darley CP, Forrester AM, McQueen-Mason SJ (2001) The molecular basis of plant cell wall extension. Plant Mol Biol 47:179–195

    CAS  Google Scholar 

  • de Lima DU, Buckeridge MS (2001) Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohyd Polym 46:157–163

    Google Scholar 

  • Edwards M, Dea ICM, Bulpin PV, Reid JSG (1985) Xyloglucan (amyloid) mobilization in the cotyledons of Tropaeolum majus L seeds following germination. Planta 163:133–140

    CAS  Google Scholar 

  • Edwards M, Dea ICM, Bulpin PV, Reid JSG (1986) Purification and properties of a novel xyloglucan-specific endo-(1→4)-beta-d-glucanase from germinated nasturtium seeds (Tropaeolum majus L). J Biol Chem 261:9489–9494

    CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    CAS  Google Scholar 

  • Feiler AA, Stiernstedt J, Theander K, Jenkins P, Rutland MW (2007) Effect of capillary condensation on friction force and adhesion. Langmuir 23:517–522

    CAS  Google Scholar 

  • Finkenstadt VL, Hendrixson TL, Millane RP (1995) Models of xyloglucan binding to cellulose microfibrils. J Carbohyd Chem 14:601–611

    CAS  Google Scholar 

  • Freitas RA, Martin S, Santos GL, Valenga F, Buckeridge MS, Reicher F, Sierakowski MR (2005) Physico-chemical properties of seed xyloglucans from different sources. Carbohyd Polym 60:507–514

    CAS  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    CAS  Google Scholar 

  • Fry SC (1997) Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J 11:1141–1150

    CAS  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ 1992 Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    CAS  Google Scholar 

  • Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plantarum 89:1–3

    CAS  Google Scholar 

  • Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG (1991) Structure and solution properties of tamarind seed polysaccharide. Carbohyd Res 214:299–314

    CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    CAS  Google Scholar 

  • Greffe L, Bessueille L, Bulone V, Brumer H (2005) Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology 15:437–445

    CAS  Google Scholar 

  • Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta-Gen Subj 1674:268–281

    CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    CAS  Google Scholar 

  • Gustavsson MT, Persson PV, Iversen T, Martinelle M, Hult K, Teeri TT, Brumer H (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromolecules 6:196–203

    CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan–cellulose assembly at the atomic scale. Biopolymers 82:59–73

    CAS  Google Scholar 

  • Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 309:1200–1205

    CAS  Google Scholar 

  • Hayashi T, Maclachlan G (1984) Pea xyloglucan and cellulose. 1. macromolecular organization. Plant Physiol 75:596–604

    CAS  Google Scholar 

  • Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. 5. xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol 83:384–389

    CAS  Google Scholar 

  • Hayashi T, Ogawa K, Mitsuishi Y (1994a) Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol 35:1199–1205

    CAS  Google Scholar 

  • Hayashi T, Takeda T, Ogawa K, Mitsuishi Y (1994b) Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant Cell Physiol 35:893–899

    CAS  Google Scholar 

  • Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76A:431–438

    CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    CAS  Google Scholar 

  • Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohyd Res 340:1826–1840

    CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279

    CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A-Mater Sci Process 81:1109–1112

    CAS  Google Scholar 

  • Jia ZH, Cash M, Darvill AG, York WS (2005) NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan. Carbohyd Res 340:1818–1825

    CAS  Google Scholar 

  • Johansson P, Brumer H, Baumann MJ, Kallas ÅM, Henriksson H, Denman SE, Teeri TT, Jones TA (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874–886

    CAS  Google Scholar 

  • Kajiwara K, Mimura M (1996) Conformation analysis of oligosaccharides. Cellulose Commun 3:18–22

    CAS  Google Scholar 

  • Kallas ÅM, Piens K, Denman SE, Henriksson H, Fäldt J, Johansson P, Brumer III H, Teeri TT (2005) Enzymatic properties of native and deglycosylated hybrid aspen xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem J 390:105–113

    CAS  Google Scholar 

  • Kalum L (1998) Enzymic stone-wash appearance of denim obtained by a process using xyloglucan/xyloglucanase. Patent No. WO 9849387

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem-Int Edit 44:3358–3393

    CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Google Scholar 

  • Kooiman P (1960) On the occurence of amyloids in plant seeds. Acta Bot Neerl 9:208–219

    CAS  Google Scholar 

  • Lang P, Kajiwara K (1993) Investigations of the architecture of tamarind seed polysaccharide in aqueous solution by different scattering techniques. J Biomat Sci Polym Ed 4:517–528

    CAS  Google Scholar 

  • Lang P, Masci G, Dentini M, Crescenzi V, Cooke D, Gidley MJ, Fanutti C, Reid JSG (1992) Tamarind seed polysaccharide—preparation, characterization and solution properties of carboxylated, sulfated and alkylaminated derivatives. Carbohyd Polym 17:185–198

    CAS  Google Scholar 

  • Levy S, Maclachlan G, Staehelin LA (1997) Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11:373–386

    CAS  Google Scholar 

  • Levy S, York WS, Stuikeprill R, Meyer B, Staehelin LA (1991) Simulations of the static and dynamic molecular conformations of xyloglucan—the role of the fucosylated side-chain in surface-specific side-chain folding. Plant J 1:195–215

    CAS  Google Scholar 

  • Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Biochem 42:389–394

    CAS  Google Scholar 

  • Lima DU, Oliveira RC, Buckeridge MS (2003) Seed storage hemicelluloses as wet-end additives in papermaking. Carbohyd Polym 52:367–373

    CAS  Google Scholar 

  • Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transfer radical polymerization. J Appl Polym Sci 100:4155–4162

    CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739

    CAS  Google Scholar 

  • Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmström E, Hult A (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7:2178–2185

    Google Scholar 

  • Martin S, Freitas RA, Obayashi E, Sierakowski MR (2003) Physico-chemical aspects of galactoxyloglucan from the seeds of Hymenaea courbaril and its tetraborate complex. Carbohyd Polym 54:287–295

    CAS  Google Scholar 

  • Martinez-Fleites C, Guerreiro CIPD, Baumann MJ, Taylor EJ, Prates JAM, Ferreira LMA, Fontes CMGA, Brumer H, Davies GJ (2006) Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281:24922–24933

    CAS  Google Scholar 

  • McDougall GJ, Fry SC (1988) Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 175:412–416

    CAS  Google Scholar 

  • McDougall GJ, Fry SC (1990) Xyloglucan oligosaccharides promote growth and activate cellulase—evidence for a role of cellulase in cell expansion. Plant Physiol 93:1042–1048

    CAS  Google Scholar 

  • Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O (2001) The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of clan-B glycoside hydrolases. Structure 9:513–525

    CAS  Google Scholar 

  • Millane RP (1992) Molecular and crystal structures of polysaccharides with cellulosic backbones. Frontiers Carbohyd Res 2:168–190

    CAS  Google Scholar 

  • Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133

    CAS  Google Scholar 

  • Miyazaki S, Endo K, Kawasaki N, Kubo W, Watanabe H, Attwood D (2003) Oral sustained delivery of paracetamol from in situ gelling xyloglucan formulations. Drug Dev Ind Pharm 29:113–119

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Google Scholar 

  • Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15:1296–1301

    CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159

    CAS  Google Scholar 

  • Nisbet DR, Crompton KE, Hamilton SD, Shirakawa S, Prankerd RJ, Finkelstein DI, Horne MK, Forsythe JS (2006) Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophys Chem 121:14–20

    CAS  Google Scholar 

  • Nishinari K, Kim B, Fang YP, Nitta Y, Takemasa M (2006) Rheological and related study of gelation of xyloglucan in the presence of small molecules and other polysaccharides. Cellulose 13:365–374

    CAS  Google Scholar 

  • Nishitani K (1992) A novel method for detection of endoxyloglucan transferase. Plant Cell Physiol 33:1159–1164

    CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    CAS  Google Scholar 

  • Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 3594–3596

  • Ogawa K, Hayashi T, Okamura K (1990) Conformational analysis of xyloglucans. Int J Biol Macromol 12:218–222

    CAS  Google Scholar 

  • Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999a) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    CAS  Google Scholar 

  • Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill A (1999b) A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100

    CAS  Google Scholar 

  • Picard C, Gruza J, Derouet C, Renard C, Mazeau K, Koca J, Imberty A, du Penhoat CH (2000) A conformational study of the xyloglucan oligomer, XXXG, by NMR spectroscopy and molecular modeling. Biopolymers 54:11–26

    CAS  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    CAS  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174

    CAS  Google Scholar 

  • Priem B, Chambat G, Ruel K, Joseleau JP (1997) Use of the avidin–biotin complex for specific immobilization of xyloglucan polysaccharides. J Carbohyd Chem 16:625–633

    CAS  Google Scholar 

  • Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG (1994) Generation of monoclonal-antibodies against plant cell wall polysaccharides. 1. Characterization of a monoclonal antibody to a terminal alpha-(1- 2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710

    CAS  Google Scholar 

  • Rao PS, Srivastava HC (1973) Tamarind. In: BeMiller JN (ed) Industrial gums—polysaccharides and their derivatives. Academic Press, New York, pp 369–411

    Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    CAS  Google Scholar 

  • Ren YL, Picout DR, Ellis PR, Ross-Murphy SB (2004) Solution properties of the xyloglucan polymer from Afzelia africana. Biomacromolecules 5:2384–2391

    CAS  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372

    CAS  Google Scholar 

  • Rutland MW, Carambassis A, Willing GA, Neuman RD (1997) Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloid Surf A-Physicochem Eng Asp 123:369–374

    Google Scholar 

  • Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    CAS  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    CAS  Google Scholar 

  • Sassi JF, Tekely P, Chanzy H (2000) Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation. Cellulose 7:119–132

    CAS  Google Scholar 

  • Saura-Valls M, Faure R, Ragas S, Piens K, Brumer H, Teeri TT, Cottaz S, Driguez H, Planas A (2006) Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase. Biochem J 395:99–106

    CAS  Google Scholar 

  • Shankaracharya NB (1998) Tamarind—chemistry, technology and uses—a critical appraisal. J Food Sci Tech 35:193–208

    CAS  Google Scholar 

  • Shipp DA (2005) Living radical polymerization: controlling molecular size and chemical functionality in vinyl polymers. J Macromol Sci-Polym Rev C45:171–194

    CAS  Google Scholar 

  • Shirakawa M, Yamatoya K, Nishinari K (1998) Tailoring of xyloglucan properties using an enzyme. Food Hydrocolloid 12:25–28

    CAS  Google Scholar 

  • Sims IM, Gane AM, Dunstan D, Allan GC, Boger DV, Melton LD, Bacic A (1998) Rheological properties of xyloglucans from different plant species. Carbohyd Polym 37:61–69

    CAS  Google Scholar 

  • Sims IM, Munro SLA, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohyd Res 293:147–172

    CAS  Google Scholar 

  • Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006a) Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7:2147–2153

    CAS  Google Scholar 

  • Stiernstedt J, Nordgren N, Wågberg L, Brumer H, Gray DG, Rutland MW (2006b) Friction and forces between cellulose model surfaces: a comparison. J Coll Int Sci 303:117–123

    CAS  Google Scholar 

  • Taylor IEP, Atkins EDT (1985) X-ray diffraction studies on the xyloglucan from tamarind (Tamarindus indica) seed. FEBS Lett 181:300–302

    CAS  Google Scholar 

  • Teeri TT, Brumer H (2003) Method for the modification of polymeric carbohydrate materials. Patent No. WO 03/033813

  • Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285

    CAS  Google Scholar 

  • Umemura M, Yuguchi Y (2005) Conformational folding of xyloglucan side chains in aqueous solution from molecular dynamics simulation. Carbohyd Res 340:2520–2532

    CAS  Google Scholar 

  • Urakawa H, Mimura M, Kajiwara K (2002) Diversity and versatility of plant seed xyloglucan. Trends Glycosci Glycotechnol 14:355–376

    CAS  Google Scholar 

  • Valent BS, Albersheim P (1974) The structure of plant cell walls. 5. On the binding of xyloglucan to cellulose fibers. Plant Physiol 54:105–108

    Article  CAS  Google Scholar 

  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345

    CAS  Google Scholar 

  • Vincken JP, Beldman G, Voragen AGJ (1997a) Substrate specificity of endoglucanases: what determines xyloglucanase activity? Carbohyd Res 298:299–310

    CAS  Google Scholar 

  • Vincken JP, York WS, Beldman G, Voragen AGJ (1997b) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114:9–13

    CAS  Google Scholar 

  • Vincken JP, Dekeizer A, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585

    CAS  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    CAS  Google Scholar 

  • Vissenberg K, Van Sandt V, Fry SC, Verbelen JP (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. J Exp Bot 54:335–344

    CAS  Google Scholar 

  • Wan WK, Hutter JL, Millon L, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Cellulose nanocomposites: processing, characterization, and properties. ACS Symposium Series, vol 938, pp 221–241

  • Wang Q, Ellis PR, Ross-Murphy SB, Burchard W (1997) Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin. Carbohyd Polym 33:115–124

    Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohyd Res 307:299–309

    CAS  Google Scholar 

  • Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–663

    CAS  Google Scholar 

  • Whittaker JW (2003) Free radical catalysis by galactose oxidase. Chem Rev 103:2347–2363

    CAS  Google Scholar 

  • Yamanaka S, Mimira M, Urakawa H, Kajiwara K, Shirakawa M, Yamatoya K (1999) Conformation of tamarind seed xyloglucan oligomers. Sen’i Gakkaishi 55:590–596

    CAS  Google Scholar 

  • Yamatoya K, Shirakawa M (2003) Xyloglucan: structure, rheological properties, biological functions and enzymatic modification. Curr Trends Polym Sci 8:27–72

    CAS  Google Scholar 

  • Yan HW, Lindström T, Christiernin M (2006) Some ways to decrease fibre suspension flocculation and improve sheet formation. Nord Pulp Paper Res J 21:36–43

    CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    CAS  Google Scholar 

  • Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y (2004) Tandem repeat of a seven-bladed beta-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 12:1209–1217

    CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    CAS  Google Scholar 

  • Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099

    CAS  Google Scholar 

  • Yoo MK, Choi HK, Kim TH, Choi YJ, Akaike T, Shirakawa M, Cho CS (2005) Drug release from xyloglucan beads coated with Eudragit for oral drug delivery. Arch Pharm Res 28:736–742

    CAS  Google Scholar 

  • York WS, Harvey LK, Guillen R, Albersheim P, Darvill AG (1993) The structure of plant cell walls. 36. Structural-analysis of tamarind seed xyloglucan oligosaccharides using beta-galactosidase digestion and spectroscopic methods. Carbohyd Res 248:285–301

    CAS  Google Scholar 

  • York WS, Kolli VSK, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohyd Res 285:99–128

    CAS  Google Scholar 

  • York WS, Vanhalbeek H, Darvill AG, Albersheim P (1990) The structure of plant cell walls. 29. Structural analysis of xyloglucan oligosaccharides by H-1-NMR spectroscopy and fast atom bombardment mass spectrometry. Carbohyd Res 200:9–31

    CAS  Google Scholar 

  • Yuguchi Y, Fujiwara T, Miwa H, Shrirakawa M, Yajima H (2005a) Color formation and gelation of xyloglucan upon addition of iodine solutions. Macromol Rapid Commun 26:1315–1319

    CAS  Google Scholar 

  • Yuguchi Y, Hirotsu T, Hosokawa J (2005b) Structural characteristics of xyloglucan—congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477

    CAS  Google Scholar 

  • Zhou Q, Baumann MJ, Brumer H, Teeri TT (2006a) The influence of surface chemical composition on the adsorption of xyloglucan to chemical and mechanical pulps. Carbohyd Polym 63:449–458

    CAS  Google Scholar 

  • Zhou Q, Baumann MJ, Piispanen PS, Teeri TT, Brumer H (2006b) Xyloglucan and xyloglucan endo-transglycosylases (XET): tools for ex vivo cellulose surface modification. Biocatal Biotransform 24:107–120

    CAS  Google Scholar 

  • Zhou Q, Greffe L, Baumann MJ, Malmström E, Teeri TT, Brumer III H (2005) The use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549

    CAS  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR), and the Swedish Agency for Innovation Systems (VINNOVA) for funding. M.W.R. and H.B. are Fellows of the Swedish Research Council (VR Rådsforskare).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Brumer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Rutland, M.W., Teeri, T.T. et al. Xyloglucan in cellulose modification. Cellulose 14, 625–641 (2007). https://doi.org/10.1007/s10570-007-9109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9109-0

Keywords

Navigation