Skip to main content
Log in

F and G Taylor series solutions to the Stark and Kepler problems with Sundman transformations

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The classic \(F\) and \(G\) Taylor series of Keplerian motion are extended to solve the Stark problem and to use the generalized Sundman transformation. Exact recursion formulas for the series coefficients are derived, and the method is implemented to high order via a symbolic manipulator. The results lead to fast and accurate propagation models with efficient discretizations. The new \(F\) and \(G\) Stark series solutions are compared to the Modern Taylor Series (MTS) and 8th order Runge–Kutta–Fehlberg (RKF8) solutions. In terms of runtime, the \(F\) and \(G\) approach is shown to compare favorably to the MTS method up to order 20, and both Taylor series methods enjoy approximate order of magnitude speedups compared to RKF8 implementations. Actual runtime is shown to vary with eccentricity, perturbation size, prescribed accuracy, and the Sundman power law. The method and results are valid for both the Stark and the Kepler problems. The effects of the generalized Sundman transformation on the accuracy of the propagation are analyzed. The Taylor series solutions are shown to be exceptionally efficient when the unity power law from the classic Sundman transformation is applied. An example low-thrust trajectory propagation demonstrates the utility of the \(F\) and \(G\) Stark series solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Subject to the hardware and software specifications and the implementation described in Sect. 4.

  2. An up-to-date version of the code can be downloaded from http://russell.ae.utexas.edu/index_files/fgstark.htm.

References

  • Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications, New York, NY (1971)

    Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. Education Series, American Institute of Aeronautics and Astronautics Inc, Reston, VA (1999)

    Book  MATH  Google Scholar 

  • Baumgarte, J.: Numerical stabilization of the differential equations of Keplerian motion. Celest. Mech. 5(4), 490–501 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bem, J., Szczodrowska-Kozar, B.: High order F and G power series for orbit determination. Astron. Astrophys. Suppl. Ser. 110, 411–417 (1995)

    ADS  Google Scholar 

  • Bendtsen, C., Stauning, O.: FADBAD, A Flexible C++ Package for Automatic Differentiation. Technical report, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark (1996)

  • Berry, M.M., Healy, L.M.: The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits. Adv. Astronaut. Sci. 112, 127–146 (2002)

    Google Scholar 

  • Berry, M.M., Healy, L.M.: Comparion of accuracy assessment techniques for numerical integration. Adv. Astronaut. Sci. 114, 1003–1016 (2003)

    Google Scholar 

  • Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.D.: ADIFOR: generating derivative codes from Fortran programs. Sci. Program. 1(1), 1–29 (1992)

    Google Scholar 

  • Bond, V.R.: A recursive formulation for computing the coefficients of the time-dependent F and G series solutions to the two-body problem. Astron. J. 71(1), 7–8 (1966)

    ADS  Google Scholar 

  • Bond, V.R.: A transformation of the two-body problem. Celest. Mech. 35(1), 1–7 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Broucke, R.: Solution of the N-body problem with recurrent power series. Celest. Mech. 4(1), 110–115 (1971)

    Article  ADS  MATH  Google Scholar 

  • Deprit, A., Zahar, R.V.M.: Numerical integration of an orbit and its concomitant variations by recurrent power series. Zeitschrift für angewandte Mathematik und Physik ZAMP 17(3), 425–430 (1966)

    Article  ADS  Google Scholar 

  • Feagin, T., Mikkilineni, R.P.: The effect of time transformations on local truncation errors. Celest. Mech. 13(4), 491–493 (1976)

    Article  ADS  Google Scholar 

  • Ferrer, S., Sein-Echaluce, M.L.: On the Szebehely–Bond equation. General Sundman’s transformation for the perturbed two-body problem. Celest. Mech. 32(4), 333–347 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Fox, K.: Numerical integration of the equations of motion of celestial mechanics. Celest. Mech. 33(2), 127–142 (1984)

    Article  ADS  MATH  Google Scholar 

  • Gofen, A.: Interactive environment for the Taylor integration (in 3D Stereo). In: Proceedings of the 2005 International Conference on Scientific Computing (CSC 05). CSREA Press (2005)

  • Huang, T.Y., Innanen, K.A.: The accuracy check in numerical integration of dynamical systems. Astron. J. 88(6), 870–876 (1983)

    Article  ADS  Google Scholar 

  • Jones, B., Anderson, R.: A survey of symplectic and collocation integration methods for orbit propagation. In: AAS/AIAA Spaceflight Mechanics Conference, pp. 1–20 (2012)

  • Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Kirchgraber, U.R.S.: A problem of orbital dynamics, which is separable in KS-variables. Celest. Mech. 4(3), 340–347 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lantoine, G., Russell, R.P.: Complete closed-form solutions of the Stark problem. Celest. Mech. Dyn. Astron. 109(4), 333–366 (2011). doi:10.1007/s10569-010-9331-1

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Merson, R.H.: Numerical Integration of the Differential Equations of Celestial Mechanics. Technical report, Royal Aircraft Establishment, Farnborough, Hants., England (1973)

  • Montenbruck, O.: Numerical integration methods for orbital motion. Celest. Mech. Dyn. Astron. 53, 59–69 (1992a)

    Article  ADS  Google Scholar 

  • Montenbruck, O.: Numerical integration of orbital motion using Taylor series. In: AAS/AIAA Spaceflight Mechanics Conference, AAS, Colorado Springs, CO (1992b)

  • Nacozy, P.: A discussion of time transformations and local truncation errors. Celest. Mech. 13(4), 495–501 (1976)

    Article  ADS  Google Scholar 

  • Nacozy, P.: The intermediate anomaly. Celest. Mech. 16(3), 309–313 (1977)

    Article  ADS  Google Scholar 

  • Namouni, F., Guzzo, M.: The accelerated Kepler problem. Celest. Mech. Dyn. Astron. 99(1), 31–44 (2007). doi:10.1007/s10569-007-9087-4

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Papadakos, D.N.: Generalized F and G series and convergence of the power series solution to the N-body problem. Celest. Mech. 30(1), 275–282 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pástor, P.: Influence of fast interstellar gas flow on the dynamics of dust grains. Celest. Mech. Dyn. Astron. 112(1), 23–45 (2011). doi:10.1007/s10569-011-9379-6

    Article  Google Scholar 

  • Poleshchikov, S.M.: One integrable case of the perturbed two-body problem. Cosm. Res. 42(4), 398–407 (2004). doi:10.1023/B:COSM.0000039740.22909.ee

    Article  ADS  Google Scholar 

  • Rabe, E.: Determination and survey of periodic Trojan orbits in the restricted problem of three bodies. Astron. J. 66(9), 500–513 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Rufer, D.: Trajectory optimization by making use of the closed solution of constant thrust-acceleration motion. Celest. Mech. 14(1), 91–103 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sconzo, P., LeSchack, A., Tobey, R.: Symbolic computation of f and g series by computer. Astron. J. 70(4), 269–270 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Scott, J.R., Martini, M.C.: High-speed solution of spacecraft trajectory problems using Taylor series integration. J. Spacecr. Rockets 47(1), 199–202 (2010)

    Article  ADS  Google Scholar 

  • Sharifi, M., Seif, M.: Dynamic orbit propagation in a gravitational field of an inhomogeneous attractive body using the Lagrange coefficients. Adv Space Res 48(5), 904–913 (2011). doi:10.1016/j.asr.2011.04.021

    Article  ADS  Google Scholar 

  • Sims, J.A., Flanagan, S.N.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamic Specialist Conference, Girdwood, AK, USA (1999)

  • Soong, T.T., Paul, N.A.: A second- and higher order perturbation analysis of two-body trajectories. AIAA J. 9(4), 589–593 (1971)

    Article  ADS  MATH  Google Scholar 

  • Stark, J.: Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. Annalen der Physik 348(7), 965–982 (1914)

    Article  ADS  Google Scholar 

  • Steffensen, J.F.: On the restricted problem of three bodies. Kongelige Danske Videnskabernes Selskab Mat-Fys Medd 30(18), (1956)

  • Stiefel, E.: Remarks on numerical integration of Keplerian orbits. Celest. Mech. 2(5), 274–281 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sundman, K.F.: Mémoire sur le problème des trois corps. Acta Math. 36(1), 105–179 (1912). doi:10.1007/BF02422379

    Article  MATH  MathSciNet  Google Scholar 

  • Szebehely, V., Bond, V.: Transformations of the perturbed two-body problem to unperturbed harmonic oscillators. Celest. Mech. 30(1), 59–69 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Szebehely, V., Pierce, D.: Advantages of regularization in space dynamics. AIAA J. 5(8), 1520–1522 (1967)

    Article  ADS  Google Scholar 

  • Velez, C.E.: Notions of analytic vs. numerical stability as applied to the numerical calculation of orbits. Celest. Mech. 10(4), 405–422 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Walther, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, chap. 7, pp. 181–202. Chapman-Hall CRC Computational Science, Boca Raton, FL (2012)

  • Yam, C.H., Izzo, D., Biscani, F.: Towards a high fidelity direct transcription method for optimisation of low-thrust trajectories. In: 4th International Conference on Astrodynamics Tools and Techniques, pp. 1–7 (2010)

  • Zuiani, F., Vasile, M., Palmas, A., Avanzini, G.: Direct transcription of low-thrust trajectories with finite trajectory elements. Acta Astronaut. 72, 108–120 (2012). doi:10.1016/j.actaastro.2011.09.011

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported in part by the Space Vehicles Directorate of the Air Force Research Laboratory under Contract No. FA9453-13-C-0205. The authors are grateful for their interest and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Pellegrini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63 KB)

Supplementary material 2 (zip 2516 KB)

Appendix: Algorithm used for the performance comparison of all integrators applied to an example low-thrust orbital transfer

Appendix: Algorithm used for the performance comparison of all integrators applied to an example low-thrust orbital transfer

figure c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, E., Russell, R.P. & Vittaldev, V. F and G Taylor series solutions to the Stark and Kepler problems with Sundman transformations. Celest Mech Dyn Astr 118, 355–378 (2014). https://doi.org/10.1007/s10569-014-9538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9538-7

Keywords

Navigation