Skip to main content
Log in

Complete closed-form solutions of the Stark problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Perturbed two-body problems play a special role in Celestial Mechanics as they capture the dominant dynamics for a broad range of natural and artificial satellites. In this paper, we investigate the classic Stark problem, corresponding to motion in a Newtonian gravitational field subjected to an additional uniform force of constant magnitude and direction. For both the two-dimensional and three-dimensional cases, the integrals of motion are determined, and the resulting quadratures are analytically integrated. A complete list of exact, closed-form solutions is deduced in terms of elliptic functions. It is found that all expressions rely on only seven fundamental solution forms. Particular attention is given to ensure that the expressions are well-behaved for very small perturbations. A comprehensive study of the phase space is also made using a boundary diagram to describe the domains of the general types of possible motion. Numerical examples are presented to validate the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baig S., McInnes C.R.: Light levitated geostationary cylindrical orbits are feasible. J. Guid. Control Dyn. 33(3), 782–793 (2010)

    Article  Google Scholar 

  • Banks D., Leopold J.G.: Ionisation of highly-excited atoms by electric fields. I. Classical theory of the critical electric field for hydrogenic ions. J. Phys. B At. Mol. Phys. 11(1), 37–46 (1978a)

    Article  ADS  MATH  Google Scholar 

  • Banks D., Leopold J.G.: Ionisation of highly excited atoms by electric fields. II. Classical theory of the Stark effect. J. Phys. B At. Mol. Phys. 11(16), 2833–2843 (1978b)

    Article  ADS  Google Scholar 

  • Beletsky V.V.: Essays on the Motion of Celestial Bodies. Birkhäuser Verlag, Basel, Switzerland (2001)

    Book  MATH  Google Scholar 

  • Born M.: The Mechanics of the Atom. F. Ungar. Pub. Co., New York (1960)

    Google Scholar 

  • Bowman, F.: Introduction to Elliptic Functions With Applications. Dover Publications, New York (1961)

    MATH  Google Scholar 

  • Byrd D., Mitchell D.: Adiabatic Bohr-Sommerfeld calculations for the hydrogenic Stark effect. Phys. Rev. A 70(6), 065401.1–065401.4 (2004)

    Article  ADS  Google Scholar 

  • Chattopadhyay A., Boxer S.G.: Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 117(4), 1449–1450 (1995)

    Article  Google Scholar 

  • Cordani B.: The Kepler Problem: Group Theoretical Aspects, Regularization and Quantization With Application to the Study of Perturbations. Birkhäuser Verlag, Basel, Switzerland (2003)

    MATH  Google Scholar 

  • Dankowicz H.: Some special orbits in the two-body problem with radiation pressure. Celest. Mech. Dyn. Astron. 58(4), 353–370 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Epstein P.S.: Zur theorie des Starkeffektes. Annalen der Physik 355(13), 489–520 (1916)

    Article  ADS  Google Scholar 

  • Forward R.L.: Statite—a spacecraft that does not orbit. J. Spacecr. Rockets 28(5), 606–611 (1991)

    Article  ADS  Google Scholar 

  • Froman N.: Stark Effect in a Hydrogenic Atom or Ion. Imperial College Press, London (2008)

    Book  Google Scholar 

  • Hamilton W.R.: Second Essay on a General Method in Dynamics, pp. 95–144. Philosophical Transactions of the Royal Society, UK (1835)

    Google Scholar 

  • Hezel T.P., Burkhardt C.E., Ciocca M., Leventhal J.J.: Classical view of the Stark effect in hydrogen atom. Am. J. Phys. 60(4), 324–328 (1992)

    Article  ADS  Google Scholar 

  • Isayev Y.N., Kunitsyn A.L.: To the problem of satellite’s perturbed motion under the influence of solar radiation pressure. Celest. Mech. Dyn. Astron. 6(1), 44–51 (1972)

    Google Scholar 

  • Ishigami M., Sau J.D., Aloni S., Cohen M.L., Zettl A.: Observation of the giant Stark effect in boron-nitride nanotubes. Phys. Rev. Lett. 94(5), 056,804.1–056,804.4 (2005)

    Article  Google Scholar 

  • Kirchgraber U.: A problem of orbital dynamics, which is separable in KS-variables. Celest. Mech. Dyn. Astron. 4(3–4), 340–347 (1971)

    MATH  Google Scholar 

  • Lagrange J.L.: Mécanique Analytique. Courcier, Paris (1788)

    Google Scholar 

  • Lantoine, G., Russell, R. P.: The Stark Model: an exact, closed-form approach to low-thrust trajectory optimization. In: 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 Sept–2 Oct 2009 (2009)

  • Liouville J.: Mémoire sur l’intégration des équations différentielles du mouvement d’un nombre quelconque de points materiels. J. de Mathematiques Pures et Appliquees 14, 257–299 (1849)

    Google Scholar 

  • Mathuna D.O.: Integrable Systems in Celestial Mechanics. Birkhäuser, Boston (2003)

    Google Scholar 

  • McInnes C.R.: Dynamics, stability, and control of displaced non-keplerian orbits. J. Guid. Control Dyn. 21(5), 799–805 (1998)

    Article  Google Scholar 

  • McKay R., de MacDonald M., Frescheville F.B., Vasile M., McInnes C., Biggs J.: Nonkeplerian orbits using low thrust, high isp propulsion systems. Paper IAC-09.C1.2.8, 60th International Astronautical Congress. Daejeon, Republic of Korea (2009)

    Google Scholar 

  • Murray-Krezan J.: The classical dynamics of Rydberg Stark atoms in momentum space. Am. J. Phys. 76(11), 1007–1011 (2008)

    Article  ADS  Google Scholar 

  • Namouni F.: On the origin of the eccentricities of extrasolar planets. Astron. J. 130(1), 280–294 (2005)

    Article  ADS  Google Scholar 

  • Namouni F.: On the flaring of jet-sustaining accretion disks. Astrophys. J. 659, 1505–1510 (2007)

    Article  ADS  Google Scholar 

  • Namouni F., Guzzo M.: The accelerated Kepler problem. Celest. Mech. Dyn. Astron. 99(1), 31–44 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Namouni F., Zhou J.L.: The influence of mutual perturbations on the eccentricity excitation by jet acceleration in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 95(1), 245–257 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nersessian A., Ohanyan V.: Multi-center MICZ-Kepler systems. Theor. Math. Phys. 155(1), 618–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Pierce D.W., Boxer S.G.: Stark effect spectroscopy of tryptophan. Biophys. J. 68(4), 1583–1591 (1995)

    Article  ADS  Google Scholar 

  • Poleshchikov S.M.: One integrable case of the perturbed two-body problem. Cosmic Res. 42(4), 398–407 (2004)

    Article  ADS  Google Scholar 

  • Rauch K.P., Holman M.: Dynamical chaos in the Wisdom-Holman integrator: origins and solutions. Astron. J. 117(2), 1087–1102 (1999)

    Article  ADS  Google Scholar 

  • Redmond P.J.: Generalization of the Runge-Lenz vector in the presence of an electric field. Phys. Rev. 133(5), 1352–1353 (1964). doi:10.1103/PhysRev.133.B1352

    Article  MathSciNet  ADS  Google Scholar 

  • Rufer D.: Trajectory optimization by making use of the closed solution of constant thrust-acceleration motion. Celest. Mech. Dyn. Astron. 14(1), 91–103 (1976)

    MathSciNet  MATH  Google Scholar 

  • Scheeres D.J.: Orbit mechanics about small asteroids. 20th International Symposium on Space Flight Dynamics. Annapolis, Maryland (2007)

    Google Scholar 

  • Spilker T.R.: Saturn ring observer. Acta Astronaut. 52(2), 259–265 (2003)

    Article  ADS  Google Scholar 

  • Stark J.: Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. I. Quereffekt. Annalen der Physik 43, 965–983 (1914)

    Article  ADS  Google Scholar 

  • Stump D.R.: A solvable non-central perturbation of the Kepler problem. Eur. J. Phys. 19(3), 299–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Vinti, J.P.: Effects of a constant force on a Keplerian orbit. In: The Theory of Orbits in the Solar System and in Stellar Systems, IAU Symposium 25, p. 55, Academic Press, London (1964)

  • Vozmischeva T.G.: Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature. Kluwer Academic Publishers, Dordrecht, The Netherlands (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Lantoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lantoine, G., Russell, R.P. Complete closed-form solutions of the Stark problem. Celest Mech Dyn Astr 109, 333–366 (2011). https://doi.org/10.1007/s10569-010-9331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9331-1

Keywords

Navigation