Skip to main content
Log in

Efficient Dehydration of Glucose, Sucrose, and Fructose to 5-Hydroxymethylfurfural Using Tri-cationic Ionic Liquids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Imidazolium predicated room temperature tri-cationic ionic liquid (RTILs) shows highly efficient and selective dehydration of fructose, sucrose, and glucose into 5-hydroxymethylfurfural (5-HMF). The formation of 5-HMF has been investigated using different reaction parameters, such as catalyst weight, reaction time and temperature. Among different reaction parameters, 93% yield of 5-HMF was obtained from fructose in [GLY(mim)3][OMs]3 at 120 °C within 2 h, while 72% and 51% yield of 5-HMF were achieved from dehydration of sucrose, and glucose respectively at 120–140 °C in 3 h to 5 h. In addition, the effect of reaction time, molar ratio, and temperature with CC-SO3H co-catalyst have been discussed. In which, 97%, 77%, and 58% yield of 5-HMF were obtained from fructose, sucrose, and glucose, respectively, in the presence of [GLY(mim)3][Cl]3 and CC-SO3H catalyst at 130–140 °C within 3–5 h. Both catalytic systems showed excellent recyclability for carbohydrates to 5- HMF conversion without any loss in its catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Scheme 5
Fig. 8

Similar content being viewed by others

References

  1. González Maldonado GM, Assary RS, Dumesic JA, Curtiss LA (2012) Acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in liquid ethanol. Energy Environ Sci 5:8990. https://doi.org/10.1039/c2ee22486k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang N, Qi W, Wu Z et al (2018) “One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid. Catal Today 302:94–99. https://doi.org/10.1016/j.cattod.2017.05.081

    Article  CAS  Google Scholar 

  3. Shi J, Yang Y, Wang N et al (2013) Catalytic conversion of fructose and sucrose to 5-hydroxymethylfurfural using simple ionic liquid/DMF binary reaction media. Catal Commun 42:89–92. https://doi.org/10.1016/j.catcom.2013.08.009

    Article  CAS  Google Scholar 

  4. Gromov NV, Taran OP, Semeykina VS et al (2017) Solid acidic NbOx/ZrO2 catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water. Catal Lett 147:1485–1495. https://doi.org/10.1007/s10562-017-2056-y

    Article  CAS  Google Scholar 

  5. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754. https://doi.org/10.1039/c0gc00401d

    Article  CAS  Google Scholar 

  6. Rathod PV, Nale SD, Jadhav VH (2017) Metal free acid base catalyst in the selective synthesis of 2,5-diformylfuran from hydroxymethylfurfural, fructose, and glucose. ACS Sustain Chem Eng 5:701–707. https://doi.org/10.1021/acssuschemeng.6b02053

    Article  CAS  Google Scholar 

  7. Siyo B, Schneider M, Pohl M-M et al (2014) Synthesis, characterization, and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF). Catal Lett 144:498–506. https://doi.org/10.1007/s10562-013-1186-0

    Article  CAS  Google Scholar 

  8. Ly N, Al-Shamery K, Chan-Thaw CE et al (2017) Impact of support oxide acidity in Pt-catalyzed HMF hydrogenation in alcoholic medium. Catal Lett 147:345–359. https://doi.org/10.1007/s10562-016-1945-9

    Article  CAS  Google Scholar 

  9. Siva Sankar E, Saidulu Reddy K, Jyothi Y et al (2017) Alcoholysis of furfuryl alcohol into n-butyl levulinate over SBA-16 supported heteropoly acid catalyst. Catal Lett 147:2807–2816. https://doi.org/10.1007/s10562-017-2155-9

    Article  CAS  Google Scholar 

  10. Amarasekara AS, Wiredu B (2014) Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. BioEnergy Res 7:1237–1243. https://doi.org/10.1007/s12155-014-9459-z

    Article  CAS  Google Scholar 

  11. Asghari FS, Yoshida H (2007) Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind Eng Chem Res 46:7703–7710. https://doi.org/10.1021/ie061673e

    Article  CAS  Google Scholar 

  12. Qi L, Mui YF, Lo SW et al (2014) Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal 4:1470–1477. https://doi.org/10.1021/cs401160y

    Article  CAS  Google Scholar 

  13. Holm MS, Pagán-Torres YJ, Saravanamurugan S et al (2012) Sn-beta catalysed conversion of hemicellulosic sugars. Green Chem 14:702. https://doi.org/10.1039/c2gc16202d

    Article  CAS  Google Scholar 

  14. Pande A, Niphadkar P, Pandare K, Bokade V (2018) Acid modified H-USY zeolite for efficient catalytic transformation of fructose to 5-hydroxymethyl furfural (Biofuel Precursor) in methyl isobutyl ketone–water biphasic system. Energy Fuels 32:3783–3791. https://doi.org/10.1021/acs.energyfuels.7b03684

    Article  CAS  Google Scholar 

  15. Aylak AR, Akmaz S, Koc SN (2017) An efficient heterogeneous CrOx–Y zeolite catalyst for glucose to HMF conversion in ionic liquids. Part Sci Technol 35:490–493. https://doi.org/10.1080/02726351.2016.1168895

    Article  CAS  Google Scholar 

  16. Richter FH, Pupovac K, Palkovits R, Schüth F (2013) Set of acidic resin catalysts to correlate structure and reactivity in fructose conversion to 5-hydroxymethylfurfural. ACS Catal 3:123–127. https://doi.org/10.1021/cs3007439

    Article  CAS  Google Scholar 

  17. Jadhav AH, Kim H, Hwang IT (2012) Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst. Catal Commun 21:96–103. https://doi.org/10.1016/j.catcom.2012.02.007

    Article  CAS  Google Scholar 

  18. Qi X, Watanabe M, Aida TM, Smith RL (2009) Efficient catalytic conversion of fructose into 5-hydroxymethylfurfural in ionic liquids at room temperature. ChemSusChem 2:944–946. https://doi.org/10.1002/cssc.200900199

    Article  CAS  PubMed  Google Scholar 

  19. Xie H, Zhao ZK, Wang Q (2012) Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids. ChemSusChem 5:901–905. https://doi.org/10.1002/cssc.201100588

    Article  CAS  PubMed  Google Scholar 

  20. Kotadia DA, Soni SS (2013) Symmetrical and unsymmetrical Brønsted acidic ionic liquids for the effective conversion of fructose to 5-hydroxymethyl furfural. Catal Sci Technol 3:469–474. https://doi.org/10.1039/C2CY20493B

    Article  CAS  Google Scholar 

  21. Serrano-Ruiz JC, Campelo JM, Francavilla M et al (2012) Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catal Sci Technol 2:1828. https://doi.org/10.1039/c2cy20217d

    Article  CAS  Google Scholar 

  22. Wu C, Yuan W, Huang Y et al (2017) Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic γ-Al2O3. Catal Lett 147:953–963. https://doi.org/10.1007/s10562-017-1982-z

    Article  CAS  Google Scholar 

  23. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. https://doi.org/10.1080/02773810701282330

    Article  CAS  Google Scholar 

  24. Sim S, Kwon S, Koo S (2012) Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural. Molecules 17:12804–12811. https://doi.org/10.3390/molecules171112804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu D(DJ, Chen EY-X (2013) Polymeric ionic liquid (PIL)-supported recyclable catalysts for biomass conversion into HMF. Biomass Bioenergy 48:181–190. https://doi.org/10.1016/j.biombioe.2012.11.020

    Article  CAS  Google Scholar 

  26. Ma Y, Qing S, Wang L et al (2015) Production of 5-hydroxymethylfurfural from fructose by a thermo-regulated and recyclable Brønsted acidic ionic liquid catalyst. RSC Adv 5:47377–47383. https://doi.org/10.1039/C5RA08107F

    Article  CAS  Google Scholar 

  27. Chen J, Zhao G, Chen L (2014) Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Adv 4:4194–4202. https://doi.org/10.1039/C3RA45632C

    Article  CAS  Google Scholar 

  28. Hu L, Sun Y, Lin L (2012) Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Ind Eng Chem Res 51:1099–1104. https://doi.org/10.1021/ie202174f

    Article  CAS  Google Scholar 

  29. Chaugule AA, Tamboli AH, Sheikh FA et al (2015) Glycerol functionalized imidazolium tri-cationic room temperature ionic liquids: synthesis, properties and catalytic performance for 2-azidoalcohol synthesis from epoxide. J Mol Liq 208:314–321. https://doi.org/10.1016/j.molliq.2015.04.058

    Article  CAS  Google Scholar 

  30. Han H, Zhao H, Liu Y et al (2017) Efficient conversion of fructose into 5-hydroxymethylfurfural over WO3/reduced graphene oxide catalysts. RSC Adv 7:3790–3795. https://doi.org/10.1039/C6RA26309G

    Article  CAS  Google Scholar 

  31. Tong X, Li Y (2010) Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Brønsted-acidic ionic liquids. ChemSusChem 3:350–355. https://doi.org/10.1002/cssc.200900224

    Article  CAS  PubMed  Google Scholar 

  32. Suganuma S, Nakajima K, Kitano M et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793. https://doi.org/10.1021/ja803983h

    Article  CAS  PubMed  Google Scholar 

  33. Thombal RS, Jadhav VH (2015) Biomass derived β-cyclodextrin-SO3H carbonaceous solid acid catalyst for catalytic conversion of carbohydrates to 5-hydroxymethylfurfural. Appl Catal A 499:213–216. https://doi.org/10.1016/j.apcata.2015.04.021

    Article  CAS  Google Scholar 

  34. Rathod PV, Jadhav VH (2018) Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions. ACS Sustain Chem Eng 6:5766–5771. https://doi.org/10.1021/acssuschemeng.7b03124

    Article  CAS  Google Scholar 

  35. Estevez R, Iglesias I, Luna D, Bautista FM (2017) Sulfonic acid functionalization of different zeolites and their use as catalysts in the microwave-assisted etherification of glycerol with tert-butyl alcohol. Molecules 22:2206. https://doi.org/10.3390/molecules22122206

    Article  PubMed Central  Google Scholar 

  36. Shi L, Wu T, Wang Y et al (2017) Nitrogen-doped carbon nanoparticles for oxygen reduction prepared via a crushing method involving a high shear mixer. Materials (Basel) 10:1030. https://doi.org/10.3390/ma10091030

    Article  CAS  Google Scholar 

  37. Moreau C, Finiels A, Vanoye L (2006) Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J Mol Catal A Chem 253:165–169. https://doi.org/10.1016/j.molcata.2006.03.046

    Article  CAS  Google Scholar 

  38. Catrinck MN, Ribeiro ES, Monteiro RS et al (2017) Direct conversion of glucose to 5-hydroxymethylfurfural using a mixture of niobic acid and niobium phosphate as a solid acid catalyst. Fuel 210:67–74. https://doi.org/10.1016/j.fuel.2017.08.035

    Article  CAS  Google Scholar 

  39. Eminov S, Wilton-Ely JDET, Hallett JP (2014) Highly selective and near-quantitative conversion of fructose to 5-hydroxymethylfurfural using mildly acidic ionic liquids. ACS Sustain Chem Eng 2:978–981. https://doi.org/10.1021/sc400553q

    Article  CAS  Google Scholar 

  40. Wang H, Deng T, Wang Y et al (2013) Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem 15:2379. https://doi.org/10.1039/c3gc41109e

    Article  CAS  Google Scholar 

  41. Raveendra G, Surendar M, Sai Prasad PS (2017) Selective conversion of fructose to 5-hydroxymethylfurfural over WO3/SnO2 catalysts. New J Chem 41:8520–8529. https://doi.org/10.1039/C7NJ00725F

    Article  CAS  Google Scholar 

  42. Guo H, Qi X, Hiraga Y et al (2017) Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem Eng J 314:508–514. https://doi.org/10.1016/j.cej.2016.12.008

    Article  CAS  Google Scholar 

  43. Cao Q, Guo X, Yao S et al (2011) Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst. Carbohydr Res 346:956–959. https://doi.org/10.1016/j.carres.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  44. Fan C, Guan H, Zhang H et al (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665. https://doi.org/10.1016/j.biombioe.2011.03.004

    Article  CAS  Google Scholar 

  45. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050. https://doi.org/10.1002/anie.200802879

    Article  CAS  Google Scholar 

  46. Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:14491454. https://doi.org/10.1002/cssc.201100770

    Article  CAS  Google Scholar 

  47. Sarwono A, Man Z, Muhammad N et al (2017) A new approach of probe sonication assisted ionic liquid conversion of glucose, cellulose and biomass into 5-hydroxymethylfurfural. Ultrason Sonochem 37:310–319. https://doi.org/10.1016/j.ultsonch.2017.01.028

    Article  CAS  PubMed  Google Scholar 

  48. Qi X, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem 3:1071–1077. https://doi.org/10.1002/cssc.201000124

    Article  CAS  PubMed  Google Scholar 

  49. Sarwono A, Man Z, Idris A et al (2019) Optimization of ionic liquid assisted sugar conversion and nanofiltration membrane separation for 5-hydroxymethylfurfural. J Ind Eng Chem 69:171–178. https://doi.org/10.1016/j.jiec.2018.09.020

    Article  CAS  Google Scholar 

  50. Jain A, Shore AM, Jonnalagadda SC et al (2015) Conversion of fructose, glucose and sucrose to 5-hydroxymethyl-2-furfural over mesoporous zirconium phosphate catalyst. Appl Catal A 489:72–76. https://doi.org/10.1016/j.apcata.2014.10.020

    Article  CAS  Google Scholar 

  51. Wiesfeld JJ, Sommerdijk NAJM, Hensen EJM (2018) Early transition metal doped tungstite as an effective catalyst for glucose upgrading to 5-hydroxymethylfurfural. Catal Lett 148:3093–3101. https://doi.org/10.1007/s10562-018-2483-4

    Article  CAS  Google Scholar 

  52. Dong K, Zhang J, Luo W et al (2018) Catalytic conversion of carbohydrates into 5-hydroxymethyl furfural over sulfonated hyper-cross-linked polymer in DMSO. Chem Eng J 334:1055–1064. https://doi.org/10.1016/j.cej.2017.10.092

    Article  CAS  Google Scholar 

  53. Martínez JJ, Silva DF, Aguilera EX et al (2017) Dehydration of glucose to 5-hydroxymethylfurfural using LaOCl/Nb2O5 catalysts in hot compressed water conditions. Catal Lett 147:1765–1774. https://doi.org/10.1007/s10562-017-2064-y

    Article  CAS  Google Scholar 

  54. Moreno-Recio M, Santamaría-González J, Maireles-Torres P (2016) Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural. Chem Eng J 303:22–30. https://doi.org/10.1016/j.cej.2016.05.120

    Article  CAS  Google Scholar 

  55. Hou Q, Zhen M, Liu L et al (2018) Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl Catal B 224:183–193. https://doi.org/10.1016/j.apcatb.2017.09.049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07048146) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)—Grants funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 20174010201160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hern Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2018 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, P.V., Mujmule, R.B., Chung, WJ. et al. Efficient Dehydration of Glucose, Sucrose, and Fructose to 5-Hydroxymethylfurfural Using Tri-cationic Ionic Liquids. Catal Lett 149, 672–687 (2019). https://doi.org/10.1007/s10562-019-02667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02667-0

Keywords

Navigation