Skip to main content

Advertisement

Log in

Aldol condensation: green perspectives

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Aldol reaction is one of the most established reactions employed for the construction of new C–C bond with application in chemical synthesis and biochemical domains. Conventionally, aldol reaction involved the use of basic catalyst in hydroalcoholic medium or use of strong bases in toxic and flammable organic solvents. Apart from long reaction times, such conditions result in mixtures of ketols and α, β unsaturated ketones and side products from competitive side reactions along with aldol products. In recent years, considerable efforts and interest have been put for the development of catalytic methods in green context for this transformation. Though numerous variants of homogenous and heterogeneous catalysts have been examined for better results, there are environment concerns associated with catalytic aldol reaction. Increasing ecological awareness and environment-friendly reactions has prompted chemists to involve improved strategies such as micellar medium, microwave irradiation and ultrasonics as alternative routes for aldol condensation. This review summarizes and updates the research on these routes with a green perspective. Reactions performed under these methodologies with or without use of heterogeneous catalysis have been highlighted with reference to the principles of green chemistry. The protocols have been primarily complied from pedagogical journals with depiction of green component wherever possible.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Ando, T. Shioiri, Enantioselective, synthesis of β-hydroxy-α-methyl aldol reaction. Tetrahedron 45, 4969–4988 (1989). https://doi.org/10.1016/S0040-4020(01)81078-4

    Article  CAS  Google Scholar 

  2. K.C. Nicolaou, E.J. Sorensen, S.H. Cheon et al., Classics in total synthesis. VCH New York (1996). https://doi.org/10.1021/ja00201a038

    Article  Google Scholar 

  3. R.W. Armstrong, J.M. Beau, Total synthesis of palytoxin carboxylic acid and palytoxin amide. J. Am. Chem. Soc. 111, 7530–7533 (1989). https://doi.org/10.1021/ja00201a038

    Article  CAS  Google Scholar 

  4. R. Kshatriya, V.P. Jejurkar, S. Saha, Recent advances in the synthetic methodologies of flavones. Tetrahedron 74, 811–833 (2018). https://doi.org/10.1016/j.tet.2017.12.052

    Article  CAS  Google Scholar 

  5. D.N. Shah, S.K. Parikh, N.M. Shah, Synthesis of flavone- and flavonol-6-carboxylic acid and related derivatives. J. Am. Chem. Soc. 77, 2223–2224 (1955). https://doi.org/10.1021/ja01613a059

    Article  CAS  Google Scholar 

  6. S. Mandal, S. Mandal, S.K. Ghosh, A. Ghosh, R. Saha, S. Banerjee, B.A. Saha, Review on aldol reaction. Synth. Commun. 46, 1327–1342 (2016). https://doi.org/10.1080/00397911.2016.1206938

    Article  CAS  Google Scholar 

  7. D.G. Powers, D.S. Casebier, D. Fokas, W.J. Ryan, J.R. Troth, D.L. Coffen, Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron 54, 4085–4096 (1998). https://doi.org/10.1016/S0040-4020(98)00137-9

    Article  CAS  Google Scholar 

  8. E.P. Kohler, H.M. Chadwell, Benzalacetophenone. Org. Synth. 2, 1 (1922). https://doi.org/10.15227/orgsyn.002.0001

    Article  Google Scholar 

  9. C.S. Marvel, L.E. Coleman, G. Scott, Pyridine analogs of chalcone and their polymerization reactions. J. Org. Chem. 20, 1785–1792 (1955). https://doi.org/10.1021/jo01364a031

    Article  CAS  Google Scholar 

  10. F. Toda, K. Tanaka, K. Hamai, Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereoselectivity. J. Chem. Soc. Perkin Trans. 1, 3207–3209 (1990). https://doi.org/10.1039/P19900003207

    Article  Google Scholar 

  11. J. March, Advanced Organic Chemistry, 4th edn. (Wiley, New York, 1992)

    Google Scholar 

  12. N. Wachter-Jurcsak, C. Radu, K. Redin, Addressing the unusual reactivity of 2-pyridinecarboxaldehyde and 2-quinolinecarboxaldehyde in base-catalyzed aldol reactions with acetophenone. Tetrahedron Lett. 39, 3903–3906 (1998). https://doi.org/10.1016/S0040-4039(98)00723-0

    Article  CAS  Google Scholar 

  13. H.O. House, D.S. Crumrine, A.Y. Teranishi, H.D. Olmstead, Chemistry of carbanions. XXIII. Use of metal complexes to control the aldol condensation. J. Am. Chem. Soc. 95, 3310–3324 (1973). https://doi.org/10.1021/ja00791a039

    Article  CAS  Google Scholar 

  14. O. Petrov, Y. Ivanova, M. Gerova, SOCl2/EtOH: catalytic system for synthesis of chalcones. Catal. Commun. 9, 315–316 (2008). https://doi.org/10.1016/j.catcom.2007.06.013

    Article  CAS  Google Scholar 

  15. T. Narender, K.P. Reddy, A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett. 48, 3177–3180 (2007). https://doi.org/10.1016/j.tetlet.2007.03.054

    Article  CAS  Google Scholar 

  16. R.J. Lewis Sr., Hazardous Chemical Desk Reference, 5th edn. (Wiley, New York, 2002)

    Google Scholar 

  17. M. Sugiura, Y. Ashikari, M. Nakajima, One-pot synthesis of β, β-disubstituted α, β-unsaturated carbonyl compounds. J. Org. Chem. 80, 8830–8835 (2015). https://doi.org/10.1021/acs.joc.5b01217

    Article  CAS  PubMed  Google Scholar 

  18. Z. Wang, G. Yin, J. Qin, M. Gao, L. Cao, An efficient method for the selective iodination of α, β-unsaturated ketones. Synthesis 22, 3675–3681 (2008). https://doi.org/10.1055/s-0028-1083200

    Article  CAS  Google Scholar 

  19. B.M. Trost, C.S. Brindle, The direct catalytic asymmetric aldol reaction. Chem. Soc. Rev. 39, 1600–1632 (2010). https://doi.org/10.1039/b923537j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anastas PT, Warner JC, Green Chem. Theory and Practice, 1998. Oxford University Press, New York. https://doi.org/10.1021/cr078380v

  21. I.T. Horváth, P.T. Anastas, Innovations and green chem. Chem. Rev. 107, 2169–2173 (2007). https://doi.org/10.1021/cr078380v

    Article  CAS  PubMed  Google Scholar 

  22. I.D. Cosimo, Aldol Reaction-Heterogeneous. Encyclopedia of Catalysis (Wiley, Hoboken, 2010)

    Google Scholar 

  23. E. Vrbková, T. Kovářová, E. Vyskočilová, L. Červený, Heterogeneous catalysts in the aldol condensation of heptanal with cyclopentanone. Prog. React. Kinet. 45, 1–10 (2020). https://doi.org/10.1177/1468678319825713

    Article  CAS  Google Scholar 

  24. E. Vrbková, E. Vyskočilová, L. Červený, Functionalized MCM-41 as a catalyst for the aldol condensation of 4-isopropylbenzaldehyde and propanal. React. Kinet. Mech. Catal. 114, 675–684 (2015). https://doi.org/10.1007/s11144-014-0811-2

    Article  CAS  Google Scholar 

  25. E. Vrbková, Z. Tišler, E. Vyskočilová et al., Aldol condensation of benzaldehyde and heptanal: a comparative study of laboratory and industrially prepared Mg-Al mixed oxides. J. Chem. Technol. Biotechnol. 93, 166–173 (2018). https://doi.org/10.1002/jctb.5336

    Article  CAS  Google Scholar 

  26. E. Vrbková, E. Vyskočilová, L. Červený, Potassium modified alumina as a catalyst for the aldol condensation of benzaldehyde with linear C3–C8 aldehydes. React. Kinet. Mech. Catal. 121, 307–316 (2017). https://doi.org/10.1007/s11144-017-1150-x

    Article  CAS  Google Scholar 

  27. S.K. Sharma, H.A. Patel, R.V. Jasra, Synthesis of jasminaldehyde using magnesium organo silicate as a solid base catalyst. J. Mol. Catal. A Chem. 280, 61–67 (2008). https://doi.org/10.1016/j.molcata.2007.10.013

    Article  CAS  Google Scholar 

  28. K. Mikami, Green Reaction Media in Organic Synthesis (Blackwell Publishing Ltd, Hoboken, 2005)

    Book  Google Scholar 

  29. K. Tanaka, Solvent-Free Organic Synthesis (Wiley, Weinheim, 2004)

    Google Scholar 

  30. P.A. Grieco, Organic Synthesis in Water (Thomson Science, London, 1998), pp. 1–278

    Book  Google Scholar 

  31. C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade updates. Chem. Rev. 105, 3095–3165 (2005). https://doi.org/10.1021/cr030009u

    Article  CAS  PubMed  Google Scholar 

  32. S. Kobayashi, I. Hachiya, The aldol reaction of silyl enol ethers with aldehydes in aqueous media. Tetrahedron Lett. 33, 1625–1628 (1992). https://doi.org/10.1016/S0040-4039(00)91691-5

    Article  CAS  Google Scholar 

  33. Z. Zhang, Y.W. Dong, G.W. Wang, Efficient and clean aldol condensation catalyzed by sodium carbonate in water. Chem. Lett. 32, 966–967 (2003). https://doi.org/10.1246/cl.2003.966

    Article  CAS  Google Scholar 

  34. T. Darbre, M. Miguel, Zn-Proline catalyzed direct aldol reaction in aqueous media. Chem. Commun. 9, 1090–1091 (2003). https://doi.org/10.1039/B301117H

    Article  Google Scholar 

  35. B.A. Hathaway, An aldol condensation experiment using a number of aldehydes and ketones. J. Chem. Educ. 64, 367 (1987). https://doi.org/10.1021/ed064p367

    Article  CAS  Google Scholar 

  36. A.M. Saeed, M.M. Mohammad, S. Forghani et al., Inexpensive and efficient organocatalyzed procedure for aqueous aldol condensations. J. Braz. Chem.. 20, 1895–1900 (2009). https://doi.org/10.1590/S0103-50532009001000018

    Article  Google Scholar 

  37. A. Barakat, A.M. Al-Majid, A.M. Al-Ghamdi et al., Tandem Aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to dimedone-barbituric acid derivatives. Chem. Cent. J. 8, 1–9 (2014). https://doi.org/10.1186/1752-153X-8-9

    Article  CAS  Google Scholar 

  38. D.J. Guerin, D. Mazeas, M.S. Musale et al., Uridine phosphorylase inhibitors: chemical modification of benzyloxybenzyl barbituric acid and its effects on UrdPase inhibition. Bioorg. Med. Chem. Lett 9, 1477–1480 (1999). https://doi.org/10.1016/s0960-894x(99)00238-3

    Article  CAS  PubMed  Google Scholar 

  39. G. Andrews, Medical Pharmacology (The CV Mosby Co, Saint Louis, 1976), pp. 243–250

    Google Scholar 

  40. W.O. Foye, Principles of Medicinal Chemistry (Lea & Febiger, Pennsylvania, 1989), pp. 143–237

    Google Scholar 

  41. L.S. Goodman, A. Gilman, The Pharmacological Basis of Therapeutics (McGraw-Hill, New Delhi, 1991), pp. 358–360

    Google Scholar 

  42. A. Nakhaei, A. Morsali, A. Davoodnia, An efficient green approach to aldol and cross-aldol condensations of ketones with aromatic aldehydes catalyzed by nanometasilica disulfuric acid in water. Russ. J. Gen. Chem. 87, 1073–1078 (2017). https://doi.org/10.1134/S1070363217050292

    Article  CAS  Google Scholar 

  43. X. Zhang, Y. Xiong, S. Zhang, X. Ling, J. Wang, C. Chen, Aldol condensations of aldehydes and ketones catalyzed by primary amine on water. Asian J. Chem. 24, 751–755 (2012)

    CAS  Google Scholar 

  44. N. Fakhfakh, P. Cognet, M. Cabassud, Y. Lucchese, D. de Los, M. Ríos, Stoichio-kinetic modeling and optimization of chemical synthesis: application to the aldolic condensation of furfural on acetone. Chem. Eng. Process. 4, 349–362 (2008). https://doi.org/10.1016/j.cep.2007.01.015

    Article  CAS  Google Scholar 

  45. A. Gandini, M.N. Belgacem, Furans in polymer chemistry. Prog. Polym. Sci. 22, 1203 (1997). https://doi.org/10.1016/S0079-6700(97)00004-X

    Article  CAS  Google Scholar 

  46. I. Sádabaa, M. Ojedaa, R. Mariscal, R. Richards, M.L. Granados, Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catalysis 167, 77–83 (2011). https://doi.org/10.1016/j.cattod.2010.11.059

    Article  CAS  Google Scholar 

  47. G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions. J. Am. Chem. Soc. 123, 8701–8708 (2001). https://doi.org/10.1021/ja0034388

    Article  CAS  PubMed  Google Scholar 

  48. K.M. Doxsee, J.E. Hutchiso, Green Organic Chemistry-Strategies, Tools, and Laboratory Experiments (Brooks/Cole, Pacific Grove, 2004), pp. 115–119

    Google Scholar 

  49. C.L. Raston, J.L. Scott, Chemoselective solvent free aldol condensation reaction. Green Chem. 2, 49–52 (2000). https://doi.org/10.1039/A907688C

    Article  CAS  Google Scholar 

  50. R.D. Palleros, Solvent free synthesis of chalcones. J. Chem. Educ. 81, 1345–1347 (2004). https://doi.org/10.1021/ed081p1345

    Article  CAS  Google Scholar 

  51. Y. Wei, R. Bakthavatchalam, Aldol addition reaction of a lithium ester enolate in the solid state. Tetrahedron Lett. 32, 1535–1538 (1991). https://doi.org/10.1016/S0040-4039(00)74265-1

    Article  CAS  Google Scholar 

  52. S.K. Sharma, P.A. Parikh, R.V. Jasra, Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J. Mol. Catal. A Chem. 278, 135–144 (2007). https://doi.org/10.1016/j.molcata.2007.09.00

    Article  CAS  Google Scholar 

  53. A. Kumar, Zirconium chloride catalyzed efficient synthesis of 1, 3-diaryl-2-propenones in solvent free conditions via aldol condensation. Mol. Catal. A Chem. 274, 212–216 (2007). https://doi.org/10.1016/j.molcata.2007.05.016

    Article  CAS  Google Scholar 

  54. T.P. Robinson, T. Ehlers, R.B. Hubbard et al., Design, synthesis, and biological evaluation of angiogenesis inhibitors: aromatic enone and dienone analogues of curcumin. Bioorg. Med. Chem. Lett. 13, 115–117 (2003). https://doi.org/10.1016/S0960-894X(02)00832-6

    Article  CAS  PubMed  Google Scholar 

  55. T.P. Robinson, R.B. Hubbard, T.J. Ehlers et al., Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem. 13, 4007–4013 (2005). https://doi.org/10.1016/j.bmc.2005.03.054

    Article  CAS  PubMed  Google Scholar 

  56. A.T. Dinkova-Kostova, C. Abeygunawardana, P. Talalay, Chemoprotective properties of phenylpropenoids, bis(benzylidene)cycloalkanones, and related michael reaction acceptors: correlation of potencies as phase 2 enzyme inducers and radical scavengers. J. Med. Chem. 41, 5287–5296 (1998). https://doi.org/10.1021/jm980424s

    Article  CAS  PubMed  Google Scholar 

  57. D. Cheng, S. Valente, S. Castellano et al., Novel 3,5-Bis(bromohydroxybenzylidene)piperidin-4-ones as coactivator-associated arginine methyltransferase 1 inhibitors: enzyme selectivity and cellular activity. J. Med. Chem. 54, 4928–4932 (2011). https://doi.org/10.1021/jm200453n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J.R. Dimmock, M.P. Padmanilayam, G.A. Zello et al., Cytotoxic analogues of 2,6-bis(arylidene)cyclohexanones. Eur. J. Med. Chem. 38, 169–177 (2003). https://doi.org/10.1016/S0223-5234(02)01444-7

    Article  CAS  PubMed  Google Scholar 

  59. A. Modzelewska, C. Pettit, G. Achanta, N.E. Davidson, P. Huang, S.R. Khan, Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg. Med. Chem. 14, 3491–3495 (2006). https://doi.org/10.1016/j.bmc.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  60. C. Piantadosi, I.H. Hall, J.L. Irvine, G.L. Carlson, Cycloalkanones. 2. Synthesis and biological activity of alpha, alpha’-dibenzylcycloalkanones. J. Med. Chem. 16, 770–795 (1973). https://doi.org/10.1021/jm00265a006

    Article  CAS  PubMed  Google Scholar 

  61. J. Deli, T. Lorand, D. Szabo, A. Foldesi, Potential bioactive pyrimidine derivatives, part 1: 2-Amino-4-aryl-8-arylidene-3,4,5,6,7,8 hexahydroquinazolines. Pharmazie 39, 539–540 (1984)

    CAS  PubMed  Google Scholar 

  62. N.J. Leonard, L.A. Miller, J.W. Berry, The synthesis of 2,7-disubstituted tropones via aromatization. J. Am. Chem. Soc. 79, 1482–1485 (1957). https://doi.org/10.1021/ja01563a056

    Article  CAS  Google Scholar 

  63. M.A. Ciufolini, N.E. Byrne, The total synthesis of cystodytins. J. Am. Chem. Soc. 113, 8016–8024 (1991). https://doi.org/10.1021/ja00021a031

    Article  CAS  Google Scholar 

  64. A.F.M. Rahman, R. Ali, Y. Jahng, A.A. Kadi, A facile solvent free Claisen-Schmidt reaction: synthesis of α, α′-bis-(substituted-benzylidene)cycloalkanones and α, α′-bis-(substituted-alkylidene)cycloalkanones. Molecules 17, 571–583 (2012). https://doi.org/10.3390/molecules17010571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. G.H. Mahdavinia, S. Rostamizadeh, A.M. Amani, M. Mirzazadeh, NH4H2PO4/SiO2: a recyclable, efficient heterogeneous catalyst for crossed aldol condensation reaction. Green Chem. Lett. Rev. 5(3), 255–281 (2012). https://doi.org/10.1080/17518253.2011.617317

    Article  CAS  Google Scholar 

  66. M.S. Abaee, M.M. Mojtahedi, R. Sharifi et al., Facile synthesis of bis(arylmethylidene)cycloalkanones mediated by lithium perchlorate under solvent-free conditions. J. Iran. Chem. Soc. 3, 293–296 (2006). https://doi.org/10.1007/BF03247222

    Article  CAS  Google Scholar 

  67. T.M. Robinson, M.C. Box, M.T.G. Williams, Choose your own (green) adventure: a solventless aldol condensation experiment for the organic chemistry laboratory. World J. Chem. Educ. 8, 104–106 (2020). https://doi.org/10.12691/wjce-8-3-1

    Article  CAS  Google Scholar 

  68. D. Xie, Y. Xie, Y. Ding, J. Wu, D. Hu, Synthesis of chiral chalcone derivatives catalyzed by the chiral cinchona alkaloid squaramide. Molecule 19, 19491–19500 (2014). https://doi.org/10.3390/molecules191219491

    Article  CAS  Google Scholar 

  69. C. Deepak, S. Nisha, Crossed aldol condensation (CAC) as a feasible route for synthesis of a 1, 2-unsaturated carbonyl compound-1,3 diphenylpropenone. Arch. Chem. Res. 1, 1–6 (2016). https://doi.org/10.21767/2572-4657.100002

    Article  Google Scholar 

  70. D.S. Desai, G.D. Yadav, Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La2O3–MgO mixed oxide catalyst. Ind. Eng. Chem. Res. 58, 16096–16105 (2019). https://doi.org/10.1021/acs.iecr.9b01138

    Article  CAS  Google Scholar 

  71. M. Nasseri, A. Allahresani, H. Raissi, A new application of nano-graphene oxide as a heterogeneous catalyst in crossed-aldol condensation reaction under solvent-free conditions. Iran. J. Catal. 4, 33–40 (2014)

    CAS  Google Scholar 

  72. T. Dwars, E. Paetzold, G. Oehme, Reactions in micellar medium. Angew. Chem. Int. Ed. 44, 7174 (2005). https://doi.org/10.1002/anie.200501365

    Article  CAS  Google Scholar 

  73. J.H. Fendler, E.J. Fendler, Catalysis in Micellar and Macromolecular Systems (Academic Press, New York, 1975)

    Google Scholar 

  74. B.H. Lipshutz, N.A. Isley, J.C. Fennewald, E.D. Slack, On the way towards greener transition-metal-catalyzed processes as quantified by E factors. Angew. Chem. Int. Ed. 52, 10952–10958 (2013). https://doi.org/10.1002/anie.201302020

    Article  CAS  Google Scholar 

  75. B.H. Lipshutz, “Nok”: a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature. J. Org. Chem. 79, 888–900 (2014). https://doi.org/10.1021/jo401744b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. J.J. Shrikhande, M.B. Gawande, R.V. Jayaram, Cross-aldol and knoevenagel condensation reactions in aqueous micellar media. Catal. Commun. 9, 1010–1016 (2008). https://doi.org/10.1016/j.catcom.2007.10.001

    Article  CAS  Google Scholar 

  77. M. Vashishtha, M. Mishra, D.O. Shah, A novel approach for selective cross aldol condensation using reusable NaOH-cationic micellar systems. Appl. Catal. A Gen. 466, 38–44 (2013). https://doi.org/10.1016/j.apcata.2013.06.015

    Article  CAS  Google Scholar 

  78. M. Vashishtha, M. Mishra, U. Singh, O.D. Shah, Molecular mechanism of micellar catalysis of cross aldol reaction: effect of surfactant chain length and surfactant concentration. J. Mol. Catal. A Chem. 396, 143–154 (2015). https://doi.org/10.1016/j.molcata.2014.09.023

    Article  CAS  Google Scholar 

  79. B.S. Kitawat, M. Singh, R.K. Kale, Robust cationic quaternary ammonium surfactant catalyzed condensation reaction for (E)-3-Aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone synthesis in water at room temperature. ACS Sustain. Chem. Eng. 1, 1040–1044 (2013). https://doi.org/10.1021/sc400102e

    Article  CAS  Google Scholar 

  80. A. Saito, J. Numaguchi, Y. Hanzawa, Pictet-Spengler reactions catalyzed by Brønsted acid surfactant-combined catalyst in water or aqueous media. Tetrahedron Lett. 48, 835–839 (2007). https://doi.org/10.1016/j.tetlet.2006.11.147

    Article  CAS  Google Scholar 

  81. S. Shirakawa, S. Kobayashi, Surfactant-type Brønsted acid catalyzed dehydrative nucleophilic substitutions of alcohols in water. Org. Lett. 9, 311–314 (2007). https://doi.org/10.1021/ol062813j

    Article  CAS  PubMed  Google Scholar 

  82. K. Phatangarea, V. Padalkara, K. Muruganb, A. Chaskarb, Bronsted acid-surfactant (BAS) catalyzed cyclotrimerization of aryl methyl ketone. Curr. Chem. Lett. 1, 133–138 (2012). https://doi.org/10.5267/j.ccl.2012.5.001

    Article  CAS  Google Scholar 

  83. A. Loupy, Microwaves in Organic Synthesis (Wiley, Weinheim, 2006)

    Book  Google Scholar 

  84. E. Martin, C.K. Yuen, Microwave assisted organic synthesis in the organic teaching lab: a simple, greener Wittig reaction. J. Chem. Educ. 84, 2004–2006 (2007). https://doi.org/10.1021/ed084p2004

    Article  CAS  Google Scholar 

  85. G.L. Kad, K.P. Kaur, V. Singh, J. Singh, Microwave induced rate enhancement in aldol condensation. Synth. Commun. 29, 2583–2586 (1999). https://doi.org/10.1080/00397919908086416

    Article  CAS  Google Scholar 

  86. S. Handayani, C. Budimarwanti, W. Haryadi, Microwave-assisted organic reactions: eco-friendly synthesis of dibenzylidenecyclohexanone derivatives via crossed aldol condensation. Indones. J. Chem. 17, 336–341 (2017). https://doi.org/10.22146/ijc.25460

    Article  CAS  Google Scholar 

  87. M. Da’i, A.M. Supardjan, E. Meiyanto, U.A. Jenie, Isomers geometric dan efek sitotoksik pada sel T47D dari analog kurkumin PGV-0 and PGV-1. Indones. J. Pharm. 18, 40–47 (2007). https://doi.org/10.14499/INDONESIANJPHARM0ISS0PP40-47

    Article  Google Scholar 

  88. D. Limnios, C.G. Kokotos, Microwave-assisted organocatalytic cross-aldol condensation of aldehydes. RSC Adv. 14, 4496–4499 (2013). https://doi.org/10.1039/C3RA00114H

    Article  Google Scholar 

  89. M. Ali, S. Ertürk, A. Umaz, Microwave-assisted intermolecular aldol condensation: efficient one-step synthesis of 3-acetyl isocoumarin and optimization of different reaction conditions. Arab. J. Chem. 11, 538–545 (2018). https://doi.org/10.1016/j.arabjc.2015.11.013

    Article  CAS  Google Scholar 

  90. R. Mondal, T.K. Mandal, A.K. Mallik, An expeditious and safe synthesis of some exocyclic α, β-unsaturated ketones by microwave-assisted condensation of cyclic ketones with aromatic aldehydes over anhydrous potassium carbonate. Org. Chem. Int. (2012). https://doi.org/10.1155/2012/456097

    Article  Google Scholar 

  91. A.S. Mamman, J.M. Lee, Y.C. Kim et al., Furfural: hemicellulose/xylosederived biochemical. Biofuels Bioprod. Biorefin. Innov. Sustain. Econ. 2, 438–454 (2008). https://doi.org/10.1002/bbb.95

    Article  CAS  Google Scholar 

  92. R. Mariscal, P.M. Torres, M. Ojeda, I. Sádaba, M.L. Granados, Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2006). https://doi.org/10.1039/C5EE02666K

    Article  CAS  Google Scholar 

  93. G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005). https://doi.org/10.1126/science.1111166

    Article  CAS  PubMed  Google Scholar 

  94. L. Faba, E. Díaz, S. Ordóñez, Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl. Catal. B Environ. (2012). https://doi.org/10.1016/j.apcatb.2011.11.039

    Article  Google Scholar 

  95. L. Smoláková, L. Dubnová, J. Kocík et al., In-situ characterization of the thermal treatment of Zn-Al hydrotalcites with respect to the formation of Zn/Al mixed oxide active in aldol condensation of furfural. Appl. Clay Sci. 157, 8–18 (2018). https://doi.org/10.1016/j.clay.2018.02.024

    Article  CAS  Google Scholar 

  96. O. Kikhtyanin, P. Chlubná, T. Jindrová, D. Kubička, Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Trans. 43, 10628–10641 (2014). https://doi.org/10.1039/C4DT00184B

    Article  CAS  PubMed  Google Scholar 

  97. A. Tampieri, M. Lilic, M. Constantí, F. Medina, Microwave-assisted aldol condensation of furfural and acetone over Mg–Al hydrotalcite-based catalysts. Curr. Comput. Aided Drug Des. 10, 833 (2020). https://doi.org/10.3390/cryst10090833

    Article  CAS  Google Scholar 

  98. S. Handayani, I.S. Arty, Synthesis of hydroxyl radical scavengers from benzalacetone and its derivatives. J. Phys. Sci. 19, 61–68 (2008)

    CAS  Google Scholar 

  99. N.L. Drake, P. Allen, Benzalacetone. J. Org. Synth. (1923). https://doi.org/10.15227/orgsyn.003.0017

    Article  Google Scholar 

  100. A. Rayar, M.S.I. Veitía, C. Ferroud, An efficient and selective microwave-assisted Claisen-Schmidt reaction for the synthesis of functionalized benzalacetones. Springer Plus 4, 221 (2015). https://doi.org/10.1186/s40064-015-0985-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. A. Cornelis, P. Laszlo, Molding clays into efficient catalysts. Synth. Lett. 3, 155–161 (1994). https://doi.org/10.1055/S-1994-22775

    Article  Google Scholar 

  102. J.S. Yadav, B.V.S. Reddy, G.M. Kumar, C.V.S.R. Murthy, Montmorillonite clay catalyzed in situ Prins-type cyclisation reaction. Tetrahedron Lett. 42, 89–91 (2001). https://doi.org/10.1016/S0040-4039(00)01891-8

    Article  CAS  Google Scholar 

  103. J.S. Yadav, B.V.S. Reddy, K.S. Patil, P.S.R. Reddy, Montmorillonite clay-catalyzed [4+2] cycloaddition reactions: a facile synthesis of pyrano- and furanoquinolines. Tetrahedron Lett. 43, 3853–3856 (2002). https://doi.org/10.1016/S0040-4039(02)00679-2

    Article  CAS  Google Scholar 

  104. A.E. Esmaeili, M.S. Tabas, A. Mohammad, N.S.F. Kazemi, Solvent-free crossed aldol condensation of cyclic ketones with aromatic aldehydes assisted by microwave irradiation. Monatshefte fur Chemie 136, 571–576 (2005). https://doi.org/10.1007/s00706-004-0256-9

    Article  CAS  Google Scholar 

  105. S. Peddibhotla, 3-substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr. Bioactive Compd. 5, 20–38 (2009). https://doi.org/10.2174/157340709787580900

    Article  CAS  Google Scholar 

  106. P. Hewawasam, M. Erway, S.L. Moon, J. Knipe et al., Synthesis and structure−activity relationships of 3-aryloxindoles: a new class of calcium-dependent, large conductance potassium (Maxi-K) channel openers with neuroprotective properties. J. Med. Chem. 45, 1487–1499 (2002). https://doi.org/10.1021/jm0101850

    Article  CAS  PubMed  Google Scholar 

  107. T. Tokunaga, W.E. Hume, T. Umezome et al., Oxindole derivatives as orally active potent growth hormone secretagogues. J. Med. Chem. 44, 4641–4649 (2001). https://doi.org/10.1021/jm0103763

    Article  CAS  PubMed  Google Scholar 

  108. Y. Koguchi, J. Kohno, M. Nishio et al., TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc TC 1093. Taxonomy, production, isolation, and biological activities. J. Antibiot. 53, 105–109 (2000). https://doi.org/10.7164/antibiotics.53.105

    Article  CAS  Google Scholar 

  109. S. Nakamura, N. Hara, H. Nakashima et al., Enantioselective synthesis of (R)-convolutamydine A with new N-heteroarylsulfonylprolinamides. Chem. Eur. J. 14, 8079–8081 (2008). https://doi.org/10.1002/chem.200800981

    Article  CAS  PubMed  Google Scholar 

  110. J.R. Chen, X.P. Liu, X.Y. Li, L. Zhu, Organocatalytic asymmetric aldol reaction of ketones with isatins: straightforward stereoselective synthesis of 3-alkyl-3-hydroxyindolin-2-ones. Tetrahedron 63, 10437–10444 (2007). https://doi.org/10.1016/j.tet.2007.08.003

    Article  CAS  Google Scholar 

  111. R. Shintani, M. Inoue, T. Hayashi, Rhodium-catalyzed asymmetric addition of aryl- and alkenylboronic acids to isatins. Angew. Chem. Int. Ed. 45, 3353–3356 (2006). https://doi.org/10.1002/anie.200600392

    Article  CAS  Google Scholar 

  112. T. Ishimaru, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, Lewis acid-catalyzed enantioselective hydroxylation reactions of oxindoles and β-keto esters using DBFOX ligand. J. Am. Chem. Soc. 128, 16488–16489 (2006). https://doi.org/10.1021/ja0668825

    Article  CAS  PubMed  Google Scholar 

  113. G. Luppi, M. Monari, R.J. Correa et al., The first total synthesis of (R)-convolutamydine A. Tetrahedron 62, 12017–12024 (2006). https://doi.org/10.1016/j.tet.2006.09.077

    Article  CAS  Google Scholar 

  114. B.M. Trost, M.U. Frederiksen, Palladium-catalyzed asymmetric allylation of prochiral nucleophiles: synthesis of 3-allyl-3-aryl oxindoles. Angew. Chem. Int. Ed. 44, 308–310 (2005). https://doi.org/10.1002/anie.200460335

    Article  CAS  Google Scholar 

  115. T. Kawasaki, M. Nagaoka, T. Satoh et al., Synthesis of 3-hydroxyindolin-2-one alkaloids, (±)-donaxaridine and (±)-convolutamydines A and E, through enolization–Claisen rearrangement of 2-allyloxyindolin-3-ones. Tetrahedron 60, 3493 (2004). https://doi.org/10.1016/j.tet.2004.02.031

    Article  CAS  Google Scholar 

  116. I.D. Hills, G.C. Fu, Catalytic enantioselective synthesis of oxindoles and benzofuranones that bear a quaternary stereocenter. Angew. Chem. Int. Ed. 42, 3921–3924 (2003). https://doi.org/10.1002/anie.200351666

    Article  CAS  Google Scholar 

  117. W.B. Chen, Y.H. Liao, X.L. Du, X.M. Zhang, W.C. Yuan, Catalyst-free aldol condensation of ketones and isatins under mild reaction conditions in DMF with molecular sieves 4 Å as additive. Green Chem. 11, 1465–1476 (2009). https://doi.org/10.1039/B906684E

    Article  CAS  Google Scholar 

  118. H.M. Meshram, N. Nageswara Rao, N. Satish Kumar, L. Chandrasekhara Rao, Microwave assisted catalyst free synthesis of 3-hydroxy-2-oxidoles by aldol condensation of acetophenones with isatins. Der Pharma Chem. 4, 1355–1360 (2012)

    Google Scholar 

  119. R. Bakhshi, B. Zeynizadeh, H. Mousavi, Green, rapid, and highly efficient syntheses of α, α-bis[(aryl or allyl)idene]cycloalkanones and 2-[(aryl or allyl)idene]- 1-indanones as potentially biologic compounds via solvent-free microwave-assisted Claisen-Schmidt condensation catalyzed by MoCl5. J. Chin. Chem. Soc. 67, 623–637 (2020). https://doi.org/10.1002/jccs.201900081

    Article  CAS  Google Scholar 

  120. B. Mounir, F. Bazi, A. Mounir, M. Zahouily, H. Toufik, Sodium-modified fluorapatite: a mild and efficient reusable catalyst for the synthesis of α, α’-bis(substituted benzylidene) cycloalkanones under conventional heating and microwave irradiation. Green Sustain. Chem. 8, 156–166 (2018). https://doi.org/10.4236/gsc.2018.82011

    Article  CAS  Google Scholar 

  121. T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999). https://doi.org/10.1021/cr980032t

    Article  CAS  PubMed  Google Scholar 

  122. J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 111, 3508–3576 (2011). https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  123. P. Wasserscheid, W. Keim, Ionic liquids: new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21%3C3772::AID-ANIE3772%3E3.0.CO;2-5

    Article  CAS  Google Scholar 

  124. A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran et al., Novel brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 124, 5962–5963 (2002). https://doi.org/10.1021/ja026290w

    Article  CAS  PubMed  Google Scholar 

  125. B.C. Ranu, S. Banerjee, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmim] OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters and nitriles. Org. Lett. 7, 3049–3052 (2005). https://doi.org/10.1021/ol051004h

    Article  CAS  PubMed  Google Scholar 

  126. C.P. Mehnert, N.C. Dispenziere, R.A. Cook, Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media. Chem. Commun. (2002). https://doi.org/10.1039/B203068C

    Article  Google Scholar 

  127. S. Hu, T. Jiang, Z. Zhang et al., Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Lett. 48, 5613–5617 (2007). https://doi.org/10.1016/j.tetlet.2007.06.051

    Article  CAS  Google Scholar 

  128. X. Cui, S. Zhang, F. Shi, Q. Zhang, Q.X. Ma, L. Lu, Y. Deng, The influence of the acidity of ionic liquids on catalysis. Chemsuschem 3, 1043–1047 (2010). https://doi.org/10.1002/cssc.201000075

    Article  CAS  PubMed  Google Scholar 

  129. S.K. Karmee, U. Hanefeld, Ionic liquid catalysed synthesis of β-hydroxy ketones. Chemsuschem 4, 1118–1123 (2011). https://doi.org/10.1002/cssc.201100083

    Article  CAS  PubMed  Google Scholar 

  130. S. Luo, H. Xu, J. Li et al., Facile evolution of asymmetric organocatalysts in water assisted by surfactant Brønsted acids. Tetrahedron 63, 11307–11314 (2007). https://doi.org/10.1016/j.tet.2007.08.096

    Article  CAS  Google Scholar 

  131. S. Luo, X. Mi, L. Zhang et al., Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron 63, 1923–1930 (2007). https://doi.org/10.1016/j.tet.2006.12.079

    Article  CAS  Google Scholar 

  132. C. Wang, J. Liu, W. Leng, Y. Gao, Rapid and efficient functionalized ionic liquid-catalyzed aldol condensation reactions associated with microwave irradiation. Int. J. Mol. Sci. 15, 1284–1299 (2014). https://doi.org/10.3390/ijms15011284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. K.S. Suslick, Mechanochemistry and sonochemistry: concluding remarks. Faraday Discuss. 170, 411–422 (2014). https://doi.org/10.1039/C4FD00148F

    Article  CAS  PubMed  Google Scholar 

  134. M.A. Margulis, Fundamental problems of sonochemistry and cavitation. Ultrason. Sonochem. 1, S87–S90 (1994). https://doi.org/10.1016/1350-4177(94)90003-5

    Article  CAS  Google Scholar 

  135. R. Tanaka, N. Takahashi, Y. Nakamura et al., Verification of the mixing processes of the active pharmaceutical ingredient, excipient and lubricant in a pharmaceutical formulation using a resonant acoustic mixing technology. RSC Adv. 6, 87049–87057 (2016). https://doi.org/10.1016/1350-4177(94)90003-5

    Article  CAS  Google Scholar 

  136. L.C. Hagenson, L.K. Doraiswamy, Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chem. Eng. Sci. 53, 131–148 (1998). https://doi.org/10.1016/S0009-2509(97)00193-0

    Article  CAS  Google Scholar 

  137. T.J. Mason, E.D. Cordemans, Ultrasonic intensification of chemical processing and related operations: a review. Chem. Eng. Res. Des.. 74, 511–516 (1996)

    CAS  Google Scholar 

  138. B.C. Barot, D.W. Sullins, E.J. Eisenbraun, Ultrasonic agitation in basic alumina catalyzed aldol condensation of ketones. Synth. Commun. 14, 397–400 (1984). https://doi.org/10.1080/00397918408059557

    Article  CAS  Google Scholar 

  139. J.L. Luche, Synthetic Organic Sonochemistry (Plenum Press, New York, 1998)

    Book  Google Scholar 

  140. G. Cravotto, A. Demetri, G. Nano et al., The aldol reaction under high-intensity ultrasound: a novel approach to an old reaction. Chem. Eur. J. 22, 4438–4444 (2013). https://doi.org/10.1002/ejoc.200300369

    Article  CAS  Google Scholar 

  141. N.G. Khaligh, T. Mihankhah, Aldol condensations of a variety of different aldehdyes and ketones under ultrasonic irradiation using poly(N-vinylimidazole) as a new heterogeneous base catalyst under solvent-free conditions in a liquid-solid system. Chin. J. Catal. 34, 2167–2173 (2013). https://doi.org/10.1016/S1872-2067(12)60658-5

    Article  CAS  Google Scholar 

  142. D.E. Crawford, Solvent-free sonochemistry: sonochemical organic synthesis in the absence of a liquid medium. Beilstein J. Org. Chem. 13, 1850–1856 (2017). https://doi.org/10.3762/bjoc.13.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. N. Cancio, A.R. Costantino, G.F. Silbestri, M.T. Pereyra, Ultrasound-assisted syntheses of chalcones: experimental design and optimization. Proceedings 41, 1–8 (2019)

    Google Scholar 

  144. A. Lahyani, M. Chtourou, M. HédiFrikha, M. Trabelsi, Amberlyst-15 and Amberlite-200C: efficient catalysts for aldol and cross-aldol condensation under ultrasound irradiation. Ultrason. Sonochem. 20, 1296–1301 (2013). https://doi.org/10.1016/j.ultsonch.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  145. K. Juvale, V.F.S. Pape, M. Wiese, Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorg. Med. Chem. 20, 346 (2012). https://doi.org/10.1016/j.bmc.2011.10.074

    Article  CAS  PubMed  Google Scholar 

  146. A.A. Tri Suma, T.D. Wahyuningsih, H.S. Mustofa, Efficient synthesis of Chloro Chalcones under ultrasound irradiation, their anticancer activities and molecular docking studies. Rasayàn J. Chem. 12, 502–510 (2019). https://doi.org/10.31788/RJC.2019.1225020

    Article  Google Scholar 

  147. M.M. Mojtahedi, L. Afshinpoor, F. Karimi et al., Green synthesis of dissymmetric bisarylidene derivatives of cyclohexanone analogues under ultrasonic conditions. J. Iran Chem. Soc. 16, 209–217 (2019). https://doi.org/10.1007/s13738-018-1498-5

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Ratnani.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargujar, S., Ratnani, S. Aldol condensation: green perspectives. J IRAN CHEM SOC 19, 2171–2190 (2022). https://doi.org/10.1007/s13738-021-02464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02464-w

Keywords

Navigation