Skip to main content
Log in

Synthesis, Characterization, and Application of PVP-Pd NP in the Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

PVP stabilized Pd nanoparticles (Pd NP) were prepared in ethylene glycol at three different NaOH/Pd ratios and characterized by XRD, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The Pd NP were applied in the aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) in an alkaline aqueous solution (T = 90 °C, pO2 = 1 bar). The highest yield of FDCA (90 %) was obtained in the presence of Pd NP with a mean diameter of 1.8 nm, prepared with a 4:1 molar ratio of NaOH:Pd. Thus prepared Pd NP could be stored in their alkaline synthesis solution under ambient conditions and showed consistently good catalytic performances after up to one month storage time, in contrast to Pd NP prepared with 2:1 and 1:1 ratio and stored in neutral or acidic environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) ChemSusChem 2:18–45

    Article  CAS  Google Scholar 

  2. Li Y, Somorjai GA (2010) Nano Lett 10:2289–2295

    Article  CAS  Google Scholar 

  3. Teranishi T, Miyake M (1998) Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  4. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bultó AM, Chaudret B (2004) J Organomet Chem 689:4601–4610

    Article  CAS  Google Scholar 

  5. Fievet F, Lagier J, Blin B, Beaudoin B, Figlarz M (1989) Solid State Ion 32:198–205

    Article  Google Scholar 

  6. Choo HP, Liew KY, Liu H (2002) J Mater Chem 12:934–937

    Article  CAS  Google Scholar 

  7. Chen L-J, Wan C–C, Wang Y–Y (2006) J Colloid Interface Sci 297:143–150

    Article  CAS  Google Scholar 

  8. Sawoo S, Srimani D, Dutta P, Lahiri R, Sarkar A (2009) Tetrahedron 65:4367–4374

    Article  CAS  Google Scholar 

  9. Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) J Phys Chem C 111:6288–6295

    Article  CAS  Google Scholar 

  10. Ott LS, Finke RG (2007) Coord Chem Rev 251:1075–1100

    Article  CAS  Google Scholar 

  11. Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y (2011) Nano Res 4:83–91

    Article  CAS  Google Scholar 

  12. Lopez-Sanchez JA, Dimitratos N, Glanville N, Kesavan L, Hammond C, Edwards JK, Carley AF, Kiely CJ, Hutchings GJ (2011) Appl Catal A 391:400–406

    Article  CAS  Google Scholar 

  13. Dimitratos N, Lopez-Sanchez JA, Lennon D, Porta F, Prati L, Villa A (2006) Catal Lett 108:147–153

    Article  CAS  Google Scholar 

  14. Dimitratos N, Porta F, Prati L (2005) Appl Catal A 291:210–214

    Article  CAS  Google Scholar 

  15. Hou Z, Theyssen N, Brinkmann A, Leitner W (2005) Angew Chem Int Ed 44:1346–1349

    Article  CAS  Google Scholar 

  16. Giachi G, Oberhauser W, Frediani M, Passaglia E, Capozzoli L, Rosi L (2013) J Poly Sci A 51:2518–2526

    Article  CAS  Google Scholar 

  17. Feng B, Hou Z, Yang H, Wang X, Hu Y, Li H, Qiao Y, Zhao X, Huang Q (2009) Langmuir 26:2505–2513

    Article  Google Scholar 

  18. Feng B, Hua L, Hou Z, Yang H, Hu Y, Li H, Zhao X (2009) Catal Commun 10:1542–1546

    Article  CAS  Google Scholar 

  19. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30

    Article  CAS  Google Scholar 

  20. Kröger M, Prüße U, Vorlop K-D (2000) Top Catal 13:237–242

    Article  Google Scholar 

  21. Rasrendra C, Soetedjo J, Makertihartha I, Adisasmito S, Heeres H (2012) Top Catal 55:543–549

    Article  CAS  Google Scholar 

  22. Wettstein SG, Alonso DM, Gürbüz EI, Dumesic JA (2012) Curr Opin Chem Eng 1:218–224

    Article  CAS  Google Scholar 

  23. Toshinari Miura HK, Takenobu Kawano, Hirohide Matsuhisa (2008) U.S. Patent, US-7,411,078B2

  24. Partenheimer W, Grushin VV (2001) Adv Synth Catal 343:102–111

    Article  CAS  Google Scholar 

  25. Ma J, Du Z, Xu J, Chu Q, Pang Y (2011) ChemSusChem 4:51–54

    Article  CAS  Google Scholar 

  26. Vinke P, van Dam HE, van Bekkum H (1990) Stud Surf Sci Catal 55:147–158

    Article  CAS  Google Scholar 

  27. Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) ChemSusChem 2:672–675

    Article  CAS  Google Scholar 

  28. Casanova O, Iborra S, Corma A (2009) ChemSusChem 2:1138–1144

    Article  CAS  Google Scholar 

  29. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Catal Today 160:55–60

    Article  CAS  Google Scholar 

  30. Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F (2011) Green Chem 13:2091–2099

    Article  CAS  Google Scholar 

  31. Davis SE, Zope BN, Davis RJ (2012) Green Chem 14:143–147

    Article  CAS  Google Scholar 

  32. Lilga M, Hallen R, Gray M (2010) Top Catal 53:1264–1269

    Article  CAS  Google Scholar 

  33. Dimitratos N, Lopez-Sanchez J, Lennon D, Porta F, Prati L, Villa A (2006) Catal Lett 108:147–153

    Article  CAS  Google Scholar 

  34. Chinthaginjala JK, Villa A, Su DS, Mojet BL, Lefferts L (2012) Catal Today 183:119–123

    Article  CAS  Google Scholar 

  35. Nadgeri JM, Telkar MM, Rode CV (2008) Catal Commun 9:441–446

    Article  CAS  Google Scholar 

  36. Alex H, Steinfeldt N, Jähnisch K, Hübner S, Bauer M Nanotechnol Rev, DOI 10.1515/ntrev-2012-0085, in press

  37. Glatter O (1980) J Appl Crystal 13:7–11

    Article  CAS  Google Scholar 

  38. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Langmuir 21:1931–1936

    Article  CAS  Google Scholar 

  39. Ait Rass H, Essayem N, Besson M (2013) Green Chem 15:2240–2251

    Article  CAS  Google Scholar 

  40. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657–10666

    Article  CAS  Google Scholar 

  41. Li Y, Boone E, El-Sayed MA (2002) Langmuir 18:4921–4925

    Article  CAS  Google Scholar 

  42. Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) Langmuir 15:7621–7625

    Article  Google Scholar 

  43. Han YF, Kumar D, Goodman DW (2005) J Catal 230:353–358

    Article  CAS  Google Scholar 

  44. Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  45. Feng B, Hou Z, Yang H, Wang X, Hu Y, Li H, Qiao Y, Zhao X, Huang Q (2009) Langmuir 26:2505–2513

    Article  Google Scholar 

  46. Steinfeldt N, Sebek M, Jähnisch K (2012) J Catal 289:249–258

    Article  CAS  Google Scholar 

  47. Gupta NK, Nishimura S, Takagaki A, Ebitani K (2011) Green Chem 13:824–827

    Article  CAS  Google Scholar 

  48. Porod G (1982) In: Glatter O, Kratky O (eds) Small Angle X-ray Scattering. Academic Press, London

    Google Scholar 

  49. Xiong Y, Chen J, Wiley B, Xia Y, Aloni S, Yin Y (2005) J Am Chem Soc 127:7332–7333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Tishreen University Latakia (Syria) and the German Academic Exchange Service (DAAD) (scholarship for B.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Steinfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siyo, B., Schneider, M., Pohl, MM. et al. Synthesis, Characterization, and Application of PVP-Pd NP in the Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF). Catal Lett 144, 498–506 (2014). https://doi.org/10.1007/s10562-013-1186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1186-0

Keywords

Navigation