Skip to main content
Log in

Catalytic, Kinetic and Thermodynamic Characteristics of an Extracellular Lipase from Penicillium notatum

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lipase of Penicillium notatum was purified to electrophoretic homogeneity by ammonium sulphate precipitation, ion-exchange, and hydrophobic interaction chromatography. The purified enzyme displayed a solitary band in the 46-kDa region on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE). The pH and temperature optima were found to be 9.5 and 40 °C, respectively. It showed stability over broad pH range (pH 6.0–12) and higher thermal tolerance with half-lives (t 1/2) of 8.25, 3.2, 1.12, and 0.58 h at 40, 50, 60 and 70 °C, respectively. The K m and V max values for p-nitro phenyl palmitate (pNPP) hydrolysis were 3.33 mM and 232.6 µmol/mL min−1, respectively. The energy of activation for denaturation Ea(d) was 81.1 kJ/mol, whereas the entropy (ΔS*), enthalpy (ΔH*) and free energy (ΔG*) of thermal inactivation of lipase were recorded to be −0.083 Jmol−l K−l, 78.48 and 104.54 kJ/mol, respectively, at 40 °C. The enzymatic activity was substantially improved by Ca2+ and Mg2+, and suppressed in the presence of Co2+ , Cd2+, Pb2+ and Fe3+ ions to various levels. Exposure to hydrophobic environment did not affect the enzyme stability; however, protease solution deactivated the enzyme. Considering all these properties, this fungal lipase would be an interesting candidate for future organic synthesis application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asgher M, Ramzan M, Bilal M (2016) Chin J Catal 25:120

    Google Scholar 

  2. Bilal M, Asgher M, Shahid M, Bhatti HN (2016) Int J Biol Macromol doi:10.1016/j.ijbiomac.2016.02.014

    Google Scholar 

  3. Maisuria VB, Nerurkar AS (2012) Biochem Eng J 63:22

    Article  CAS  Google Scholar 

  4. Li N, Zong MH (2010) J Mol Catal B 66:43

    Article  Google Scholar 

  5. Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Int J Biol Macromol 91:1161

    Article  CAS  Google Scholar 

  6. Fernandez-Lafuente R (2010) J Mol Catal B 62:197

    Article  CAS  Google Scholar 

  7. Vakhlu J, Kour A (2006) Electron J Biotechnol 9:69

    Article  CAS  Google Scholar 

  8. Gupta R, Gupta N, Rathi P (2004) Appl Microbiol Biotechnol 64:763

  9. Dutra J, Terzi CV, Bevilaqua JV, Couri DS, Langone MCT (2008) Appl Biochem Biotech 147:63

    Article  CAS  Google Scholar 

  10. Griebeler N, Polloni AE, Remonatto D, Arbter F, Vardanega R, Cechet JL (2009) Food Bioprocess Technol 4:578

    Article  Google Scholar 

  11. Bilal M, Asgher M, Ramzan M (2015) Sci Res Enzyme Essays 10:456

    Article  Google Scholar 

  12. Asgher M, Bilal M, Ramzan M (2016) Chin J Catal 37:561

    Article  CAS  Google Scholar 

  13. Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandez-Lafuente R (2015) Biotechnol Adv doi: 10.1016/j.biotechadv2015.03.006.

    Google Scholar 

  14. Harikrishna S, Srinivas ND, Raghavarao KSMS, Karanth NG (2002) Adv Biochem Eng Biotechnol 75:119

    Google Scholar 

  15. Ramirez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cardenas-Chavez DL, Hernandez-Luna C, Demarche P, Enaud E, Garcia-Morales R, Agathos SN, Parra R (2014) J Mol Catal B 108:32

    Article  CAS  Google Scholar 

  16. Saxena RK, Sheoran A, Giri B, Davidson S (2003) J Microbiol Methods 52:1

    Article  CAS  Google Scholar 

  17. Rehman S, Bhatti HN, Bhatti IA, Asgher M (2011) Afr J Biotechnol 10(84):19580

    CAS  Google Scholar 

  18. Bhatti HN, Asgher M, Abbas A, Nawaz R, Sheikh MA (2006) J Agric Food Chem 54:4617

    Article  CAS  Google Scholar 

  19. H.N. Bhatti, M.N. Akbar, M.A. Zia (2007) J Chem Soc Pak 29:99

    CAS  Google Scholar 

  20. Laemmli UK (1970) Nature 227:680

    Article  CAS  Google Scholar 

  21. Yagiz F, Kazan D, Akin AN (2007) Chem Eng J 134:262

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  23. Amin M, Bhatti HN, Perveen F (2008) J Chem Soc Pak 30:480

    CAS  Google Scholar 

  24. Ferrer M, Francisco JP, Oscar MN, Fuensanta R, Antonio B (2000) J Chem Technol Biotechnol 75:569

    Article  CAS  Google Scholar 

  25. Tan TW, Zhang M, Xu JL, Zhang J (2004) Process Biochem 39:1495

    Article  CAS  Google Scholar 

  26. Shaheen I, Bhatti HN, Ashraf T (2008) Int J Food Sci Technol 43(7):1152–1158

    Article  CAS  Google Scholar 

  27. Dheeman DS, Babu SA, Frıas JM, Henehan GTM (2011) J Mol Catal B 72:256

    Article  CAS  Google Scholar 

  28. Gohel SD, Singh SP (2013) Int J Biol Macromole 20:27

    Google Scholar 

  29. Gutarra ML, Godoy MG, Maugeri F, Rodrigues MI, Freiro DM, Castilho LR (2009) Bioresour Technol 100:5249

    Article  CAS  Google Scholar 

  30. Kempka AP, Lipke NR, Pinheiro TLF, Menoncin S, Treichel H, Freire DMG (2008) Bioprocess Biosyst Eng 31:119

    Article  CAS  Google Scholar 

  31. Amin F, Bhatti HN, Asgher M (2010) Pak J Bot 42:2531

    CAS  Google Scholar 

  32. Chahinian H, Vanot G, Ibrick A, Rugani N, Sarda L, Comeau LC (2000) Biosci Biotechnol Biochem 64:215

    Article  CAS  Google Scholar 

  33. Wolski E, Rigo E, Luccio MD, Oliveira JV, de Oliveira D, Treichel H (2009) Lett Appl Microbiol 49:60

    Article  CAS  Google Scholar 

  34. Menoncin S, Domingues NM, D.M.G. Freire, Toniazzo G, Cansian RL, Oliveira JV (2010) Food Bioprocess Technol 3:537

    Article  CAS  Google Scholar 

  35. Dandavate V, Jinjala J, Keharia H, Madamwar D (2009) Bioresour Technol 100:3374

    Article  CAS  Google Scholar 

  36. Mukherjee G, Banerjee R (2006) World J Microbiol Biotechnol 22:207

    Article  CAS  Google Scholar 

  37. Pencreach G, Baratti JC (1996) Enzyme Microb Technol 18:417–422

    Article  CAS  Google Scholar 

  38. Kambourova M, Kirilova N, Mandeva R, Derekova A (2003) J Mol Catal B 22:307

    Article  CAS  Google Scholar 

  39. Vielle C, Zeikus JG (1996) Trends Biotechnol 14:183

    Article  Google Scholar 

  40. Ibrick A, Chahinian H, Rugani N, Sarda L, Comeau LC (1998) Lipids 33:377

    Article  Google Scholar 

  41. Lima VMG, Krieger N, Mitchell DA, Fontana JD (2004) Biochem Eng J 18:65

    Article  CAS  Google Scholar 

  42. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) J Biol Inorg Chem 13:1205

    Article  CAS  Google Scholar 

  43. Liu R, Jiang X, Mou H, Guan H, Hwang H, Li X (2009) Biochem Eng J 46:265

    Article  CAS  Google Scholar 

  44. Hiol A, Jonzo MD, Rugani N, Druet D, Sarda L, Comeau LC (2000) Enzyme Microb Technol 26:421

    Article  CAS  Google Scholar 

  45. Bancerz R, Ginalska G (2007) J Indus Microbiol Biotechnol 34:553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of Ph.D. studies of Ms. Saima Rehman and was financially supported by Higher Education Commission (HEC), Pakistan under the Indigenous Ph.D. 5000 Scholarship Scheme. The authors are thankful to HEC for timely provision of funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Bhatti, H.N., Bilal, M. et al. Catalytic, Kinetic and Thermodynamic Characteristics of an Extracellular Lipase from Penicillium notatum . Catal Lett 147, 281–291 (2017). https://doi.org/10.1007/s10562-016-1931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1931-2

Keywords

Navigation