Skip to main content
Log in

Isolation and Screening of Lipase-Producing Fungi with Hydrolytic Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Lipases are enzymes that can be secreted by several microorganisms, making interesting the biodiversity exploration for searching new microorganisms able to produce these enzymes. Many agro-industrial residues can be used as potential substrates for production of enzymes. The main objective of this work was the isolation and screening of microorganisms with potential to produce lipases. Among 24 fungi, five were selected as good lipase producers using tributyrin on agar plates and solid state fermentation of soybean bran. Two of them were isolated from soil samples, another two from soybean bran, and one from dairy products. These fungi were identified by microcultivation technique as from Penicillium and Aspergillus genera. Through random amplified polymorphic DNA technique, the most promising strains could be genetically discriminated, selecting two fungi as good lipase producers but genetically different. One isolated from soybean bran could hydrolyze efficiently triglycerides with fatty acids with different chain length. Another isolated from dairy products was only effective to hydrolyze triglycerides with long-chain fatty acids. Two distinct groups could be verified by means of this technique, comprising the most productive strains and the lowest or nonproductive ones in terms of hydrolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azeredo, L. A. I., Gomes, P. M., Sant’Anna Jr, G. L., Castilho, L. R., & Freire, D. M. G. (2007). Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Current Microbiology, 54, 361–365. doi:10.1007/s00284-006-0425-7.

    Article  CAS  Google Scholar 

  • Barnett, H. L., Barry, B., & Hunter, B. (1998). Illustrated genera of imperfect fungi. New York, USA: American Phytopathological Society.

    Google Scholar 

  • Björkling, F., Godtfredsen, S. E., & Kirk, O. (1991). The future impact of industrial lipases. Trends in Biotechnology, 9, 360–363. doi:10.1016/0167-7799(91)90119-3.

    Article  Google Scholar 

  • Bradoo, S., Rathi, P., Saxena, R. K., & Gupta, R. (2002). Microwave-assisted rapid characterization of lipase selectivities. Journal of Biochemistry, 51, 115–120.

    CAS  Google Scholar 

  • Cardenas, F., Alvarez, E., Castro-Alvarez, M. S., Sanchez-Montero, J. M., Valmaseda, M., Elson, S. W., et al. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis. B, Enzymatic, 14, 111–123. doi:10.1016/S1381-1177(00)00244-7.

    Article  CAS  Google Scholar 

  • Castilho, L. R., Polato, C. M. S., Baruque, E. A., Sant’anna Jr, G. L., & Freire, D. M. G. (2000). Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochemical Engineering Journal, 4, 239–247. doi:10.1016/S1369-703X(99)00052-2.

    Article  CAS  Google Scholar 

  • Cavalcanti, E. A. C., Gutarra, M. L. E., Freire, D. M. G., Castilho, L. R., & Sant’anna Jr, G. L. (2005). Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48, 79–84.

    Google Scholar 

  • Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal of Microbiology & Biotechnology, 22, 881–885. doi:10.1007/s11274-005-9118-9.

    Article  CAS  Google Scholar 

  • Di Luccio, M., Capra, F., Ribeiro, N. P., Vargas, G. D. L. P., Freire, D. M. G., & Oliveira, D. (2004). Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum. Applied Biochemistry and Biotechnology, 113, 173–180. doi:10.1385/ABAB:113:1-3:173.

    Article  Google Scholar 

  • Franken, L. P. G., Marcon, N. S., Treichel, H., Oliveira, D., Freire, D. M. G., Dariva, C., et al. (2008). Effect of treatment with compressed propane on lipases hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0087-5.

  • Freire, D. M. G. (1996). Seleção de microrganismos lipolíticos e estudo da produção de lipase por Penicillium restrictum. Ph D Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

  • Gombert, A. K., Pinto, A. L., Castilho, L. R., & Freire, D. M. G. (1999). Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochemistry, 35, 85–90. doi:10.1016/S0032-9592(99)00036-9.

    Article  CAS  Google Scholar 

  • Gutarra, M. L. E., Cavalcanti, E. D. C., Castilho, L. R., Freire, D. M. G., & Sant’anna Jr., G. L. (2005). Lipase production by solid-state fermentation. Applied Biochemistry and Biotechnology, 121, 105–116. doi:10.1385/ABAB:121:1-3:0105.

    Article  Google Scholar 

  • Hernalsteens, S., Maugeri, F. (2008). Partial purification and characterization of extracellular fructofuranosidase with transfructosylating activity from Candida sp. Food and Bioprocess Technology. doi:10.1007/s11947-008-0089-3.

  • Ikeh, E. I. (2003). Methicilin-resistant Staphylococcus aureus (MRSA) at Jos University Teaching Hospital. African Journal of Clinical and Experimantal Microbiology, 4(1), 52–55.

    Google Scholar 

  • Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–403. doi:10.1016/S0167-7799(98)01195-0.

    Article  CAS  Google Scholar 

  • Kempka, A. P., Lipke, N. L., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid state fermentation. Bioprocess and Biosystems Engineering, 31, 119–125. doi:10.1007/s00449-007-0154-8.

    Article  CAS  Google Scholar 

  • Kim, J. T., Kang, S. G., Woo, J. H., Lee, J. H., Jeong, B. C., & Kim, S. J. (2007). Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Applied Microbiology and Biotechnology, 74, 820–828. doi:10.1007/s00253-006-0727-5.

    Article  CAS  Google Scholar 

  • Ko, W. H., Wang, I. T., & Ann, P. J. (2005). A simple method for detection of lipolytic microorganisms in soils. Soil Biology & Biochemistry, 37, 597–599. doi:10.1016/j.soilbio.2004.09.006.

    Article  CAS  Google Scholar 

  • Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S. S., & Gupta, R. (2005). Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41, 38–44. doi:10.1016/j.pep.2004.12.010.

    Article  CAS  Google Scholar 

  • Menoncin, S., Domingues, N. M., Freire, D. M. G., Toniazzo, G., Cansian, R. L., Oliveira, J. V., et al. (2008). Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food and Bioprocess Technology. doi:10.1007/s11947-008-0104-8.

  • Meronuck, R. A. (1987). The significance of fungi in cereal grains. Plant Disease, 71, 287–291.

    Google Scholar 

  • Palma, M. B., Pinto, A. L., Gombert, K., Seitz, K. H., Kivatinitz, S., Castilho, L. R., et al. (2000). Lipase Production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Applied Biochemistry and Biotechnology, 84, 1137–1145. doi:10.1385/ABAB:84-86:1-9:1137.

    Article  Google Scholar 

  • Pandey, A. (2003). Solid state fermentation. Biochemical Engineering Journal, 13, 81–84. doi:10.1016/S1369-703X(02)00121-3.

    Article  CAS  Google Scholar 

  • Rodriguez, J. A., Mateos, J. C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochemistry, 41, 2264–2269. doi:10.1016/j.procbio.2006.05.017.

    Article  CAS  Google Scholar 

  • Raeder, U., & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1, 17–20. doi:10.1111/j.1472-765X.1985.tb01479.x.

    Article  CAS  Google Scholar 

  • Rossetto, C. A. V., Viegas, E. C., & Lima, T. M. (2003). Contaminação fúngica do amendoim em função das doses de calcário e épocas de amostragem. Bragantia, 62, 437–445. doi:10.1590/S0006-87052003000300010.

    Article  Google Scholar 

  • Samson, R. A., Hoekstra, E. S., & Frisvad, J. C. (1995). Introduction to food-borne fungi. Utrecht, Holland: Baar:Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01)00086-6.

    Article  CAS  Google Scholar 

  • Silveira, I. A., Oliveira, R. M., & Carvalho, E. P. (2000). Aspectos gerais, positivos e negativos da utilização de marcadores PCR-RAPD na identificação de microrganismos. Boletim SBCTA, 34(2), 77–83.

    Google Scholar 

  • Soccol, C. R., & Vandenberghe, L. P. S. (2003). Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal, 13, 205–218. doi:10.1016/S1369-703X(02)00133-X.

    Article  CAS  Google Scholar 

  • Toniazzo, G., Lerin, L., Oliveira, D., Dariva, C., Cansian, R. L., Padilha, F. F., et al. (2006). Microorganism screening for the bioconversion of limonene and correlation with RAPD markers. Applied Biochemistry and Biotechnology, 132, 1023–1033. doi:10.1385/ABAB:132:1:1023.

    Article  Google Scholar 

  • Vargas, G. D. L. P., Treichel, H., Oliveira, D., Benetti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Optimization of lipase production by Penicillium simplicissimum in soybean meal. Journal of Chemical Technology and Biotechnology, 83, 47–54. doi:10.1002/jctb.1776.

    Article  CAS  Google Scholar 

  • Wang, Y., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995). Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). Journal of Fermentation and Bioengineering, 79, 433–438. doi:10.1016/0922-338X(95)91257-6.

    Article  CAS  Google Scholar 

  • Williams, J. K. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingev, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535. doi:10.1093/nar/18.22.6531.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES/PROCAD, CNPq, and Intecnial for the financial support of this work and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Di Luccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebeler, N., Polloni, A.E., Remonatto, D. et al. Isolation and Screening of Lipase-Producing Fungi with Hydrolytic Activity. Food Bioprocess Technol 4, 578–586 (2011). https://doi.org/10.1007/s11947-008-0176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0176-5

Keywords

Navigation