Skip to main content
Log in

Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512

  • Original Article
  • Published:
Lipids

Abstract

An extracellular lipase (EC 3.1.1.3, AN0512Lip) from Aspergillus niger AN0512 was purified and its characteristics were investigated. After the process of ammonium sulfate precipitation followed by ion-exchange chromatography and gel filtration, the purified lipase was achieved with 203.6-fold purification and 22.1 % recovery. AN0512Lip exhibited the highest activity at 50 °C and pH 5.0. It was thermostable and pH-stable, as indicated by that more than 50 % activity retained at 60 °C for 20 h and more than 90 % activity retained at pH 3.0 for 20 h, respectively. AN0512Lip activity was stimulated by some divalent metal ions (especially Cu2+, Ca2+), while greatly suppressed by EDTA, indicating that AN0512Lip was a metal-activated enzyme. Moreover, AN0512Lip exhibited high tolerance for various polar organic solvents with log P < 0.8, and the highest lipase activity (476 % of its original activity) was achieved after addition of 90 % (V/V) isopropanol to the reaction mixture. AN0512Lip also displayed 3-regiospecificity and great affinity for the long-chain fatty ester. The preliminary test showed that AN0512Lip was a candidate for enriching EPA and DHA in fish oil. All the unique properties, such as thermostability, Cu2+-dependent, 3-regiospecificity, and polar organic solvent-tolerance, indicated that AN0512Lip could have potential applications in the food industry, even in organic synthesis and the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AN0512Lip:

Lipase from Aspergillus niger AN0512

DH:

Degree of hydrolysis

EDTA:

Ethylene diamine tetraacetic acid

K m :

Michaelis constant

PMSF:

Phenylmethanesulfonyl fluoride

p-NPP:

p-Nitrophenyl palmitate

p-NPD:

p-Nitrophenyl dodecanoate

p-NPO:

p-Nitrophenyl octanoate

p-NPA:

p-Nitrophenyl acetate

SDS:

Sodium dodecyl sulfonate

TLC:

Thin-layer chromatography

V max :

The maximum velocity for the reaction

References

  1. Ellaiah P, Prabhakar T, Ramakrishna B, Taleb AT, Adinarayana K (2004) Production of lipase by immobilized cells of Aspergillus niger. Process Biochem 39:525–528

    Article  CAS  Google Scholar 

  2. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  3. Gutarra ML, Godoy MG, Maugeri F, Rodrigues MI, Freire DM, Castilho LR (2009) Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol 100:5249–5254

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho PDO, Contesini FJ, Bizaco R, Macedo GA (2005) Kinetic properties and enantioselectivity of the lipases produced by four Aspergillus species. Food Biotechnol 19:183–192

    Article  CAS  Google Scholar 

  5. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Article  CAS  PubMed  Google Scholar 

  6. Romero CM, Pera LM, Loto F, Vallejos C, Castro G, Baigori MD (2012) Purification of an organic solvent-tolerant lipase from Aspergillus niger MYA 135 and its application in ester synthesis. Biocatal Agric Biotechnol 1:25–31

    CAS  Google Scholar 

  7. Yamaguchi S, Mase T (1991) Purification and characterization of mono- and diacylglycerol lipase isolated from Penicillium camembertii U-150. Appl Microbiol Biotechnol 34:720–725

    Article  CAS  Google Scholar 

  8. Abel Hiol MDJ, Druet D, Comeau L (1999) Production, purification and characterization of an extracellular lipase from Mucor hiemalis f. hiemalis. Enzyme Microb Technol 25:80–87

    Article  Google Scholar 

  9. Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B Enzym 64:1–22

    Article  CAS  Google Scholar 

  10. Saxena RK, Davidson WS, Sheoran A, Giri B (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247

    Article  CAS  Google Scholar 

  11. Mateos Diaz JC, Rodríguez JA, Roussos S, Cordova J, Abousalham A, Carriere F, Baratti J (2006) Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39:1042–1050

    Article  CAS  Google Scholar 

  12. Timberlake WE, Marshall MA (1989) Genetic engineering of filamentous fungi. Science 244:1313–1317

    Article  CAS  PubMed  Google Scholar 

  13. Contesini FJ, Lopes DB, Macedo GA, Nascimento M, Carvalho P (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171

    Article  CAS  Google Scholar 

  14. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger—a review. Appl Microbiol Biotechnol 59:426–435

    Article  CAS  PubMed  Google Scholar 

  15. Zamost B, Nielsen H, Starnes R (1991) Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–81

    Article  CAS  Google Scholar 

  16. Todida J, Arikawa Y, Kondou K, Fukuzawa M, Sekiguchi J (1998) Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci Biotechnol Biochem 62:759–763

    Article  Google Scholar 

  17. Mander P, Cho SS, Simkhada JR, Choi YH, Park DJ, Yoo JC (2012) An organic solvent-tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochem 47:635–642

    Article  CAS  Google Scholar 

  18. Pokorny D, Cimerman A, Steiner W (1997) Aspergillus niger lipases: induction, isolation and characterization of two lipases from a MZKI Al 16 strain. J Mol Catal B Enzym 2:215–222

    Article  CAS  Google Scholar 

  19. Romero CM, Pera LM, Olivaro C, Vazquez A, Baigori MD (2012) Tailoring chain length selectivity of a solvent-tolerant lipase activity from Aspergillus niger MYA 135 by submerged fermentation. Fuel Process Technol 98:23–29

    Article  CAS  Google Scholar 

  20. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  21. Uttatree S, Winayanuwattikun P, Charoenpanich J (2010) Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl Biochem Biotechnol 162:1362–1376

    Article  CAS  PubMed  Google Scholar 

  22. Sun T, Pigott GM, Herwig RP (2002) Lipase-assisted concentration of n-3 polyunsaturated fatty acids from viscera of farmed Atlantic salmon (Salmo salar L.). J Food Sci 67:130–136

    Article  CAS  Google Scholar 

  23. Bispo P, Batista I, Bernardino RJ, Bandarra NM (2014) Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio. Appl Biochem Biotech 172:1866–1881

    Article  CAS  Google Scholar 

  24. Guil-Guerrero JL, López-Martínez JC, Rincón-Cervera MA, Campra-Madrid P (2007) One-step extraction and concentration of polyunsaturated fatty acids from fish liver. J Am Oil Chem Soc 84:357–361

    Article  CAS  Google Scholar 

  25. Hu S, Wei H, Guo S, Li L, Hou Y (2011) Flavor evaluation of yak butter in Tsinghai-Tibet Plateau and isolation of microorganisms contributing flavor. Anim Sci J 82:122–126

    Article  CAS  PubMed  Google Scholar 

  26. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  30. Cao Y, Zhuang Y, Yao C, Wu B, He B (2012) Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem Eng J 64:55–60

    Article  CAS  Google Scholar 

  31. Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490

    Article  CAS  PubMed  Google Scholar 

  32. Kojima Y, Shimizu S (2003) Purification and characterization of the lipase from Pseudomonas fluorescens HU380. J Biosci Bioeng 96:219–226

    Article  CAS  PubMed  Google Scholar 

  33. Wanasundara UN, Shahidi F (1998) Lipase-assisted concentration of n-3 polyunsaturated fatty acids in acylglycerols from marine oils. J Am Oil Chem Soc 75:945–951

    Article  CAS  Google Scholar 

  34. Pan XX, Xu L, Zhang Y, Xiao X, Wang XF, Liu Y, Zhang HJ, Yan YJ (2012) Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. J Agric Food Chem 60:9673–9679

    Article  CAS  PubMed  Google Scholar 

  35. Namboodiri VM, Chattopadhyaya R (2000) Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids 35:495–502

    Article  CAS  PubMed  Google Scholar 

  36. Yadav RP, Saxena RK, Gupta R, Davidson WS (1998) Purification and characterization of a regiospecific lipase from Aspergillus terreus. Biotechnol Appl Biochem 28:243–249

    CAS  PubMed  Google Scholar 

  37. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400

    Article  CAS  PubMed  Google Scholar 

  38. Talon R, Dublet N, Montel MC, Cantonnet M (1995) Purification and characterization of extracellular Staphylococcus warneri lipase. Curr Microbiol 30:11–16

    Article  CAS  PubMed  Google Scholar 

  39. Kasana RC, Kaur B, Yadav SK (2008) Isolation and identification of a psychrotrophic Acinetobacter sp. CR9 and characterization of its alkaline lipase. J Basic Microbiol 48:207–212

    Article  CAS  PubMed  Google Scholar 

  40. Castro-Ochoa LD, Rodríguez-Gómez C, Valerio-Alfaro G, Oliart Ros R (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb Technol 37:648–654

    Article  CAS  Google Scholar 

  41. Song X, Qi X, Hao B, Qu Y (2008) Studies of substrate specificities of lipases from different sources. Eur J Lipid Sci Technol 110:1095–1101

    Article  CAS  Google Scholar 

  42. Ramani K, John Kennedy L, Ramakrishnan M, Sekaran G (2010) Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem 45:1683–1691

    Article  CAS  Google Scholar 

  43. Gaur R, Gupta A, Khare SK (2008) Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem 43:1040–1046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Natural Science Fund of China (Grant Numbers 31130042, 31171630 and 21206046) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Number 20130172110018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Hu, S., Li, L. et al. Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512. Lipids 50, 1155–1163 (2015). https://doi.org/10.1007/s11745-015-4052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4052-6

Keywords

Navigation