Skip to main content
Log in

Activation of Dodecanethiol-Capped Gold Catalysts for CO Oxidation by Treatment with KMnO4 or K2MnO4

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dodecanethiol-protected gold nanoparticles were deposited onto fumed SiO2 (Cab-O-Sil) via colloidal deposition. The catalyst was treated with a strongly oxidative KMnO4 or K2MnO4 solution. Low-temperature conversion in catalytic CO oxidation increased dramatically following the oxidative treatment and subsequent thermal activation at 300 °C to burn off residual organic species. On the other hand, the treatment with Fenton’s reagent did not lead to any positive effect. The influences of the average sizes of pre-synthesized gold particles (1.8, 2.1, 3.9, 9.9 nm) and the choice of different supports (SiO2, TiO2, C) were investigated, and relevant characterization using TG/DTG, XRD, TEM, EDX, and HAADF was conducted. The catalyst stability as a function of time on stream was also surveyed. This work establishes the beneficial effect of treating dodecanethiol-capped gold catalysts by KMnO4 or K2MnO4.

Graphical Abstract

Dodecanethiol-capped gold nanoparticles were deposited onto SiO2, TiO2, or carbon support, and the resulting catalysts were treated by aqueous KMnO4 or K2MnO4 followed by treatment in O2–He at 300 °C. The catalytic activity in low-temperature CO oxidation was increased due to the creation of Au–MnO x interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Haruta M, Daté M (2001) Appl Catal A 222:427

    Article  CAS  Google Scholar 

  2. Choudhary TV, Goodman DW (2002) Top Catal 21:25

    Article  CAS  Google Scholar 

  3. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  4. Bond GC, Louis C, Thompson DT (2006) Catalysis by Gold. Imperial College Press, London

    Book  Google Scholar 

  5. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767

    Article  CAS  Google Scholar 

  6. Tsubota S, Nakamura T, Tanaka K, Haruta M (1998) Catal Lett 56:131

    Article  CAS  Google Scholar 

  7. Grunwaldt JD, Kiener C, Wogerbauer C, Baiker A (1999) J Catal 181:223

    Article  CAS  Google Scholar 

  8. Porta F, Prati L, Rossi M, Coluccia S, Martra G (2000) Catal Today 61:165

    Article  CAS  Google Scholar 

  9. Martra G, Prati L, Manfredotti C, Biella S, Rossi M, Coluccia S (2003) J Phys Chem B 107:5453

    Article  CAS  Google Scholar 

  10. Chou J, Franklin NR, Baeck S-H, Jaramillo TF, McFarland EW (2004) Catal Lett 95:107

    Article  CAS  Google Scholar 

  11. Comotti M, Li WC, Spliethoff B, Schüth F (2006) J Am Chem Soc 128:917

    Article  CAS  Google Scholar 

  12. Zheng NF, Stucky GD (2006) J Am Chem Soc 128:14278

    Article  CAS  Google Scholar 

  13. Hickey N, Larochette PA, Gentilini C, Sordelli L, Olivi L, Polizzi S, Montini T, Fornasiero P, Pasquato L, Graziani M (2007) Chem Mater 19:650

    Article  CAS  Google Scholar 

  14. Liu YM, Tsunoyama H, Akita T, Tsukuda T (2009) J Phys Chem C 113:13457

    Article  CAS  Google Scholar 

  15. Zhou SH, Yin HF, Schwartz V, Wu ZL, Mullins DR, Eichhorn B, Overbury SH, Dai S (2008) Chem Phys Chem 9:2475

    CAS  Google Scholar 

  16. Zhou SH, Ma Z, Yin HF, Wu ZL, Eichhorn B, Overbury SH, Dai S (2009) J Phys Chem C 113:5758

    Article  CAS  Google Scholar 

  17. Yin HF, Ma Z, Overbury SH, Dai S (2008) J Phys Chem C 112:8349

    Article  CAS  Google Scholar 

  18. Gomez S, Giraldo O, Garces LJ, Villegas J, Suib SL (2004) Chem Mater 16:2411

    Article  CAS  Google Scholar 

  19. Dong XP, Shen WH, Zhu YF, Xiong LM, Gu JL, Shi JL (2005) Micropor Mesopor Mater 81:235

    Article  CAS  Google Scholar 

  20. Dong XP, Shen WH, Zhu YF, Xiong LM, Shi JL (2005) Adv Funct Mater 15:955

    Article  CAS  Google Scholar 

  21. Gardner SD, Hoflund GB, Upchurch BT, Schryer DR, Kielin EJ, Schryer J (1991) J Catal 129:114

    Article  CAS  Google Scholar 

  22. Hoflund GB, Gardner SD, Schryer DR, Upchurch BT, Kielin EJ (1995) Appl Catal B 6:117

    Article  CAS  Google Scholar 

  23. Sanchez RMT, Ueda A, Tanaka K, Haruta M (1997) J Catal 168:125

    Article  CAS  Google Scholar 

  24. Lee S-J, Gavriilidis A, Pankhurst QA, Kyek A, Wagner FE, Wong PCL, Yeung KL (2001) J Catal 200:298

    Article  CAS  Google Scholar 

  25. Luengnaruemitchai A, Thoa DTK, Osuwan S, Gulari E (2005) Int J Hydrogen Energ 30:981

    Article  CAS  Google Scholar 

  26. Ma Z, Liang CD, Overbury SH, Dai S (2007) J Catal 252:119

    Article  CAS  Google Scholar 

  27. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc-Chem Commun 801

  28. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17

    Article  CAS  Google Scholar 

  29. Neyens E, Baeyens J (2003) J Hazard Mater 98:33

    Article  CAS  Google Scholar 

  30. Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129

    Article  Google Scholar 

  31. Wang AQ, Hsieh Y-P, Chen Y-F, Mou C-Y (2006) J Catal 237:197

    Article  CAS  Google Scholar 

  32. Zhu HG, Ma Z, Clark JC, Pan ZW, Overbury SH, Dai S (2007) Appl Catal A 326:89

    Article  CAS  Google Scholar 

  33. Ma Z, Brown S, Overbury SH, Dai S (2007) Appl Catal A 327:226

    Article  CAS  Google Scholar 

  34. Ma Z, Yin HF, Dai S (2010) Catal Lett. doi:10.1007/s10562-009-0201-y

  35. Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) Nano Res 1:229

    Article  CAS  Google Scholar 

  36. Okumura M, Tsubota S, Haruta M (2003) J Mol Catal A 199:73

    Article  CAS  Google Scholar 

  37. Bulushev DA, Yuranov I, Suvorova EI, Buffat PA, Kiwi-Minsker L (2004) J Catal 224:8

    Article  CAS  Google Scholar 

  38. Wang F, Lu GX (2007) Catal Lett 115:46

    Article  CAS  Google Scholar 

  39. Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307

    Article  CAS  Google Scholar 

  40. Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:95

    Google Scholar 

  41. Ma Z, Overbury SH, Dai S (2009) In: Lukehart CM, Scott RA (eds) Nanomaterials: Inorganic and Bioinorganic Perspectives. John Wiley & Sons, Chichester, p 247

    Google Scholar 

  42. Huang XK, Yue HJ, Attia A, Yang Y (2007) J Electrochem Soc 154:A26

    Article  CAS  Google Scholar 

  43. Nowicka AM, Hasse U, Hermes M, Scholz F (2010) Angew Chem Int Ed 49:1061

    Article  CAS  Google Scholar 

  44. Gallegos AA, Martinez SS, Velazquez RF (2008) In: Gunther MB (ed) Heterogeneous Catalysis Research Progress. Nova Science Publishers, New York, p 193

    Google Scholar 

  45. Zhu HG, Ma Z, Overbury SH, Dai S (2007) Catal Lett 116:128

    Article  CAS  Google Scholar 

  46. Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) J Phys Chem C 112:9448

    Article  CAS  Google Scholar 

  47. Ma Z, Dai S (2008) Mater Technol 21:81

    Google Scholar 

  48. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  49. Lin SD, Bollinger M, Vannice MA (1993) Catal Lett 17:245

    Article  CAS  Google Scholar 

  50. Wolf A, Schüth F (2002) Appl Catal A 226:1

    Article  CAS  Google Scholar 

  51. Overbury SH, Ortiz-Soto L, Zhu HG, Lee B, Amiridis MD, Dai S (2004) Catal Lett 95:99

    Article  CAS  Google Scholar 

  52. Yan WF, Chen B, Mahurin SM, Hagaman EW, Dai S, Overbury SH (2004) J Phys Chem B 108:2793

    Article  CAS  Google Scholar 

  53. Delannoy L, El Hassan N, Musi A, Le To NN, Krafft J-M, Louis C (2006) J Phys Chem B 110:22471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. This research was also supported by the appointment for H.F. Yin to the ORNL Research Associates Program, administered by Oak Ridge Associated Universities. The electron microscopy experiments were carried out at the Oak Ridge National Laboratory SHaRE User Facility, which is supported by the Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dai.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1844 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Ma, Z., Chi, M. et al. Activation of Dodecanethiol-Capped Gold Catalysts for CO Oxidation by Treatment with KMnO4 or K2MnO4 . Catal Lett 136, 209–221 (2010). https://doi.org/10.1007/s10562-010-0316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0316-1

Keywords

Navigation