Skip to main content
Log in

Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h−1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Frost, Nature 334 (1988) 577.

    Google Scholar 

  2. S.D. Lin and M.A. Vannice, Catal. Lett. 10 (1991) 47.

    Google Scholar 

  3. A.G. Daglish and D.D. Eley, 2nd ICC, 1960, 2 (1961) 1615.

    Google Scholar 

  4. N.W. Cant and P.W. Fredrickson, J. Catal. 37 (1975) 531.

    Google Scholar 

  5. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett. (1987) 405.

  6. M. Haruta, N. Yamada, T. Kobayashi and S. Lijima, J. Catal. 115 (1989) 301.

    Google Scholar 

  7. S.D. Gardner, G.B. Hoflund, D.R. Schryer, J. Schryer, B.T. Upchurch and E.J. Kielin, Langmuir 7 (1991) 2135.

    Google Scholar 

  8. S.D. Gardner, G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J. Kielin and J. Schryer, J. Catal. 129 (1991) 114.

    Google Scholar 

  9. T. Kobayashi, M. Haruta, H. Sano and M. Nakane, Sensors and Actuators 13 (1988) 339.

    Google Scholar 

  10. T. Kobayashi, M. Haruta, S. Tsubota, H. Sano and B. Delmon, Sensors and Actuators B1 (1990) 222.

    Google Scholar 

  11. P. Weisz, Phys. Chem. NF 11 (1957) 1.

    Google Scholar 

  12. K.I. Choi and M.A. Vannice, J. Catal. 131 (1991) 1.

    Google Scholar 

  13. S.J. Tauster, S.C. Fung and R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170.

    Google Scholar 

  14. S.D. Lin, PhD Thesis, The Pennsylvania State University, PA, USA (1992).

    Google Scholar 

  15. J.J. Stephan and V. Ponec, J. Catal. 42 (1976) 1.

    Google Scholar 

  16. A.G. Sault, R.J. Madix and C.T. Campbell, Surf. Sci. 169 (1986) 347.

    Google Scholar 

  17. D.A. Outka, and R.J. Madix, Surf. Sci. 179 (1987) 351.

    Google Scholar 

  18. K.I. Choi and M.A. Vannice, J. Catal. 131 (1991) 22.

    Google Scholar 

  19. G.I. Golodets, L.G. Svintsova, I.T. Chashechnikova and V.V. Shimanovskaya, Kinet. Katal. 31 (1990) 997.

    Google Scholar 

  20. P. Vergnon, J.M. Herrmann and S.J. Teichner, Zh. Fiz. Khim. 52 (1978) 3025.

    Google Scholar 

  21. Y. Onishi and T. Hamamura, Bull. Chem. Soc. Japan 43 (1970) 996.

    Google Scholar 

  22. I.L. Mikhailova, I.S. Sazonova and N.P. Keier, Kinet. Katal. 6 (1965) 704.

    Google Scholar 

  23. V.D. Sokolovskii, A.G.K. Boreskov, A.A. Davydov, A.G. Anshits and Yu.M. Shchekochikhin, Dokl. Akad. Nauk SSSR 214 (1974) 1361.

    Google Scholar 

  24. A.A. Bobyshev and V.A. Radtsig, Khim. Fiz. 4 (1985) 501.

    Google Scholar 

  25. R. Huzimura, H. Kurisu and T. Okuda, Surf. Sci. 197 (1988) 444.

    Google Scholar 

  26. O. Gonen, P.L. Kuhns, J.S. Waugh and J.P. Fraissard, J. Phys. Chem. 93 (1989) 504.

    Google Scholar 

  27. A.G. Shastri, A.K. Datye and J. Schwank, J. Catal. 87 (1984) 265.

    Google Scholar 

  28. G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.

    Google Scholar 

  29. N.D. Spencer and R.M. Lambert, Surf. Sci. 107 (1981) 237.

    Google Scholar 

  30. Y. Kang, J.A. Skiles and J.P. Wightman, J. Phys. Chem. 84 (1980) 1448.

    Google Scholar 

  31. R.V. Siriwardane and J.P. Wightman, J. Colloid Interface Sci. 94 (1983) 502.

    Google Scholar 

  32. G.D. Parfitt, J. Ramsbotham and C.H. Rochester, Faraday Soc. Trans. 67 (1971) 3100.

    Google Scholar 

  33. S.D. Gardner, G.B. Hoflund, M.R. Davidson, H.A. Laitinen, D.R. Schryer and B.T. Upchurch, Langmuir 7 (1991) 2140.

    Google Scholar 

  34. J. Schwank, S. Galvagno and G. Parravano, J. Catal. 63 (1980) 415.

    Google Scholar 

  35. S. Galvagno and G. Parravano, Ber. Bunsenges. Phys. Chem. 83 (1979) 894.

    Google Scholar 

  36. D.Y. Cha and G. Parravano, J. Catal. 18 (1970) 200.

    Google Scholar 

  37. E. Lisowski, L. Stobinski and R. Dus, Surf. Sci. 188 (1987) L735.

    Google Scholar 

  38. B. Beden, A. Bewick, K. Kunimatsu and C. Lamy, J. Electroanal. Chem. 142 (1982) 345.

    Google Scholar 

  39. J. Schwank, G. Parravano and H.L. Gruber, J. Catal. 61 (1980) 19.

    Google Scholar 

  40. S. Galvagno and G. Parravano, J. Catal. 55 (1978) 178.

    Google Scholar 

  41. A.F. Benton and J.C. Elgin, J. Am. Chem. Soc. 49 (1927) 2426.

    Google Scholar 

  42. N.W. Cant and K.H. Hall, J. Phys. Chem. 75 (1971) 2914.

    Google Scholar 

  43. S. Naito and M. Tanimoto, J. Chem. Soc. Chem. Commun. (1988) 832.

  44. I.W. Bassi, F.W. Lytle and G. Parravano, J. Catal. 42 (1976) 139.

    Google Scholar 

  45. G. Cocco, S. Enzo, G. Fagherazzi, L. Schiffini, I.W. Bassi, G. Vlaic, S. Galvagno and G. Parravano, J. Phys. Chem. 83 (1979) 2527.

    Google Scholar 

  46. H. Kageyama, N. Kamijo, T. Kobayashi and M. Haruta, Physica B158 (1989) 183.

    Google Scholar 

  47. W.N. Delgass, M. Boudart and G. Parravano, J. Phys. Chem. 72 (1968) 3563.

    Google Scholar 

  48. M. Batista-Leal, J.E. Lester and C.A. Lucchesi, J. Electron. Spectry. Relat. Phenom. 11 (1977) 333.

    Google Scholar 

  49. K.S. Liang, W.R. Salaneck and I.A. Akasay, Solid State Commun. 19 (1976) 329.

    Google Scholar 

  50. K.S. Kim and N. Winograd, Chem. Phys. Lett. 30 (1975) 91.

    Google Scholar 

  51. M. Boudart, D.E. Mears and M.A. Vannice, Ind. Chim. Belg. 32 (1967) 281.

    Google Scholar 

  52. M.A. Vannice, S.H. Hyun, B. Kalpakci and W.C. Liauh, J. Catal. 56 (1979) 358.

    Google Scholar 

  53. Y.B. Zhao and R. Gomer, Surf. Sci. 261 (1992) 171.

    Google Scholar 

  54. L. Kieken and M. Boudart, 10th Int. Congr. on Catalysis, Budapest, July 1992.

  55. M.A. Vannice, Catal. Today 12 (1992) 255.

    Google Scholar 

  56. S. Tsubota, M. Haruta, T. Kobayashi, A. Veda and Y. Nakahara, in:Preparation of Catalysts, Vol. 5, eds. G. Poncelet, P.A. Jacobs, P. Grange and B. Delmon (Elsevier, Amsterdam, 1991) p. 695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.D., Bollinger, M. & Vannice, M.A. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal Lett 17, 245–262 (1993). https://doi.org/10.1007/BF00766147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00766147

Keywords

Navigation