Skip to main content
Log in

Influence of the Preparation Method of Au, Pd, Pt, and Rh/TiO2 Nanostructures and Their Catalytic Activity on the CO Oxidation at Low Temperature

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Au/TiO2, Pd/TiO2, Pt/TiO2 and Rh/TiO2 catalysts were synthesized by the deposition–precipitation with urea (DPU) and sol–gel (SG) methods to elucidate the influence of the preparation method on the catalytic activity in the CO oxidation at low temperature. In all cases, the metal loading was 1 wt%. The effect of the synthesis method was remarkable for the Au/TiO2 and Pd/TiO2 materials and less important for the Pt/TiO2 and Rh/TiO2 materials. However, for the four materials, the DPU method revealed the most active materials at 0 °C with respect to the sol–gel method. Au/TiO2 and Rh/TiO2, obtained by the DPU method, were active at temperatures below 0 °C and showed outstanding catalytic activity in comparison with the Pd/TiO2 and Pt/TiO2 catalysts. Density Functional Theory based calculations on M13/TiO2 (M = Au, Pd, Pt or Rh) structures revealed a superior charge transfer from a defective support to Au, while Rh triggered O2 bond scission in the oxygen vacancy site located in the metal-support interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boudart M (1969) Catalysis by supported metals**This work was sponsored by grant GK 648 of the nationalscience foundation. Its continuity over the years has been assured by a generous grant from the petroleum research fund of the American chemical society. In: Eley DD, Pines H, Weisz PB (eds). Academic Press, vol 20, pp 153–166

    Google Scholar 

  2. Gerhard E, Helmut K, Ferdi S, Jens W (2008) Handbook of Heterogeneous Catalysis, vol 1, 2nd edn. Wiley‐VCH Verlag GmbH & Co, pp 1283–1357

    Chapter  Google Scholar 

  3. Eschemann TO, Bitter JH, de Jong KP (2014) Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer-Tropsch synthesis. Catal Today 228:89–95. https://doi.org/10.1016/j.cattod.2013.10.041

    Article  CAS  Google Scholar 

  4. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218. https://doi.org/10.1021/nl052099j

    Article  CAS  PubMed  Google Scholar 

  5. D’Agata A, Fasulo S, Dallas LJ et al (2014) Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8:549–558. https://doi.org/10.3109/17435390.2013.807446

    Article  CAS  PubMed  Google Scholar 

  6. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  7. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  8. Kominami H, Kato J, Takada Y et al (1997) Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents. Catal Lett 46:235–240. https://doi.org/10.1023/A:1019022719479

    Article  CAS  Google Scholar 

  9. Bagheri S, Shameli K, Abd Hamid SB (2013) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem 2013:848205. https://doi.org/10.1155/2013/848205

    Article  CAS  Google Scholar 

  10. Palcheva R, Dimitrov L, Tyuliev G et al (2013) TiO2 nanotubes supported NiW hydrodesulphurization catalysts: characterization and activity. Appl Surf Sci 265:309–316. https://doi.org/10.1016/j.apsusc.2012.11.001

    Article  CAS  Google Scholar 

  11. Liang G, He L, Cheng H et al (2014) The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. J Catal 309:468–476. https://doi.org/10.1016/j.jcat.2013.10.022

    Article  CAS  Google Scholar 

  12. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309. https://doi.org/10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  13. Takano S, Tsukuda T (2015) Chapter 2—controlled synthesis: size control. In: Tsukuda T, Häkkinen H (eds) Protected metal clusters. Elsevier, pp 9–38

    Google Scholar 

  14. Yan W, Chen B, Mahurin SM et al (2005) Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J Phys Chem B 109:10676–10685. https://doi.org/10.1021/jp044091o

    Article  CAS  PubMed  Google Scholar 

  15. Kaden WE, Kunkel WA, Roberts FS et al (2014) Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts. Surf Sci 621:40–50. https://doi.org/10.1016/j.susc.2013.11.002

    Article  CAS  Google Scholar 

  16. Shahreen L, Chase GG, Turinske AJ et al (2013) NO decomposition by CO over Pd catalyst supported on TiO2 nanofibers. Chem Eng J 225:340–349. https://doi.org/10.1016/j.cej.2013.03.102

    Article  CAS  Google Scholar 

  17. Chua YPG, Gunasooriya GTKK, Saeys M, Seebauer EG (2014) Controlling the CO oxidation rate over Pt/TiO2 catalysts by defect engineering of the TiO2 support. J Catal 311:306–313. https://doi.org/10.1016/j.jcat.2013.12.007

    Article  CAS  Google Scholar 

  18. Zhang C, Yu H, Li Y et al (2013) Simple synthesis of Pt/TiO2 nanotube arrays with high activity and stability. J Electroanal Chem 701:14–19. https://doi.org/10.1016/j.jelechem.2013.04.012

    Article  CAS  Google Scholar 

  19. Guan H, Lin J, Qiao B et al (2016) Catalytically active Rh Sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew Chem Int Ed 55:2820–2824. https://doi.org/10.1002/anie.201510643

    Article  CAS  Google Scholar 

  20. Camposeco R, Hinojosa-Reyes M, Castillo S et al (2021) Synthesis and characterization of highly dispersed bimetallic Au-Rh nanoparticles supported on titanate nanotubes for CO oxidation reaction at low temperature. Environ Sci Pollut Res 28:10734–10748. https://doi.org/10.1007/s11356-020-11341-7

    Article  CAS  Google Scholar 

  21. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  22. Torrente-Murciano L (2016) The importance of particle-support interaction on particle size determination by gas chemisorption. J Nanoparticle Res Interdiscip Forum Nanoscale Sci Technol 18:87. https://doi.org/10.1007/s11051-016-3385-2

    Article  CAS  Google Scholar 

  23. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  24. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  25. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B—Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  29. Perdew JP, Ruzsinszky A, Csonka GI et al (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406. https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  PubMed  Google Scholar 

  30. Dudarev SL, Botton GA, Savrasov SY et al (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  31. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  32. Torres AE, Rodríguez-Pineda J, Zanella R (2021) Relevance of dispersion and the electronic spin in the DFT + U approach for the description of pristine and defective TiO2 anatase. ACS Omega 6:23170–23180. https://doi.org/10.1021/acsomega.1c02761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stradi D, Jelver L, Smidstrup S, Stokbro K (2017) Method for determining optimal supercell representation of interfaces. arXiv

  34. Momma K, Izumi F (2011) Vesta for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  35. V. Wang, N. Xu, J.C. Liu, G. Tang WTG VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code

  36. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  37. Dimitrakis DA, Tsongidis NI, Konstandopoulos AG (2016) Reduction enthalpy and charge distribution of substituted ferrites and doped ceria for thermochemical water and carbon dioxide splitting with DFT+U. Phys Chem Chem Phys 18:23587–23595. https://doi.org/10.1039/C6CP05073E

    Article  CAS  PubMed  Google Scholar 

  38. Zanella R, Louis C (2005) Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catal Today 107–108:768–777. https://doi.org/10.1016/j.cattod.2005.07.008

    Article  CAS  Google Scholar 

  39. Kung HH, Kung MC, Costello CK (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216:425–432. https://doi.org/10.1016/S0021-9517(02)00111-2

    Article  CAS  Google Scholar 

  40. Zanella R, Delannoy L, Louis C (2005) Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea. Appl Catal A Gen 291:62–72. https://doi.org/10.1016/j.apcata.2005.02.045

    Article  CAS  Google Scholar 

  41. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102–115. https://doi.org/10.1023/A:1020181423055

    Article  CAS  Google Scholar 

  42. McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564. https://doi.org/10.1002/(SICI)1096-9918(199807)26:8%3c549::AID-SIA396%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  43. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A Gen 391:367–376. https://doi.org/10.1016/j.apcata.2010.05.039

    Article  CAS  Google Scholar 

  44. Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis—nitrogen–carbon-doped TiO2 film. Appl Surf Sci 253:1988–1994. https://doi.org/10.1016/j.apsusc.2006.03.078

    Article  CAS  Google Scholar 

  45. McClory MM, Gonzalez RD (1986) Catalytic oxidation of carbon monoxide over ruthenium-rhodium (RuRh)silica bimetallic clusters. J Phys Chem 90:628–633. https://doi.org/10.1021/j100276a029

    Article  CAS  Google Scholar 

  46. Raj R, Harold MP, Balakotaiah V (2015) Steady-state and dynamic hysteresis effects during lean co-oxidation of CO and C3H6 over Pt/Al2O3 monolithic catalyst. Chem Eng J 281:322–333. https://doi.org/10.1016/j.cej.2015.06.057

    Article  CAS  Google Scholar 

  47. Voogt EH, Mens AJM, Gijzeman OLJ, Geus JW (1996) XPS analysis of palladium oxide layers and particles. Surf Sci 350:21–31. https://doi.org/10.1016/0039-6028(96)01028-X

    Article  CAS  Google Scholar 

  48. Kukovecz Á, Pótári G, Oszkó A et al (2011) Probing the interaction of Au, Rh and bimetallic Au–Rh clusters with the TiO2 nanowire and nanotube support. Surf Sci 605:1048–1055. https://doi.org/10.1016/j.susc.2011.03.003

    Article  CAS  Google Scholar 

  49. Pérez-Ramírez J, Kondratenko EV, Novell-Leruth G, Ricart JM (2009) Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory. J Catal 261:217–223. https://doi.org/10.1016/j.jcat.2008.11.018

    Article  CAS  Google Scholar 

  50. Ekou T, Ekou L, Vicente A et al (2011) Citral hydrogenation over Rh and Pt catalysts supported on TiO2: influence of the preparation and activation protocols of the catalysts. J Mol Catal A Chem 337:82–88. https://doi.org/10.1016/j.molcata.2011.01.020

    Article  CAS  Google Scholar 

  51. Sandoval A, Aguilar A, Louis C et al (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49. https://doi.org/10.1016/j.jcat.2011.04.003

    Article  CAS  Google Scholar 

  52. Scirè S, Minicò S, Crisafulli C, Galvagno S (2001) Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3. Catal Commun 2:229–232. https://doi.org/10.1016/S1566-7367(01)00035-8

    Article  Google Scholar 

  53. Altass HM, Khder AERS (2018) Catalytic oxidation of carbon monoxide over of gold-supported iron oxide catalyst. Mater Res Innov 22:107–114. https://doi.org/10.1080/14328917.2016.1264707

    Article  CAS  Google Scholar 

  54. Wang Y-G, Yoon Y, Glezakou V-A et al (2013) The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J Am Chem Soc 135:10673–10683. https://doi.org/10.1021/ja402063v

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka S, Lin J, Kaneti YV et al (2018) Gold nanoparticles supported on mesoporous iron oxide for enhanced CO oxidation reaction. Nanoscale 10:4779–4785. https://doi.org/10.1039/C7NR08895G

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y-G, Mei D, Glezakou V-A et al (2015) Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 6:6511. https://doi.org/10.1038/ncomms7511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the CB A1-S-18269 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN104022 grant. We also thank V. Maturano for technical support. A. E. Torres gratefully acknowledges DGTIC-UNAM for the use of supercomputer facilities through the project LANCAD-UNAM-DGTIC-401 and UNAM for funding through the project DGAPA-PAPIIT IA202521, which have contributed to the theoretical results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Torres, A.E. & Zanella, R. Influence of the Preparation Method of Au, Pd, Pt, and Rh/TiO2 Nanostructures and Their Catalytic Activity on the CO Oxidation at Low Temperature. Top Catal 65, 798–816 (2022). https://doi.org/10.1007/s11244-022-01607-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01607-4

Keywords

Navigation