Skip to main content
Log in

Catalytic behavior of gold nanoparticles supported on a TiO2-Al2O3 mixed oxide for CO oxidation at low temperature

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present work highlights the versatility of a TiO2-Al2O3 mixed oxide bearing highly dispersed gold nanoparticles that was applied in the CO oxidation reaction at room temperature. The TiO2, Al2O3, and TiO2-Al2O3 supports were synthesized by the sol–gel method, while gold nanoparticles were added by the deposition–precipitation with urea method using a theoretical Au loading of 2 wt.%. A promotional effect of the TiO2-Al2O3 support on the activity of gold catalysts with respect to TiO2 and Al2O3 was observed; Au/TiO2-Al2O3 showed outstanding CO oxidation, being active from 0 °C and stable throughout a 24-h test. As for the alumina content (5, 10, and 15 wt.%) in TiO2, it improved the textural properties by retarding the crystal growth and anatase–rutile phase transformation of TiO2, suppressing the deposition of carbon on the catalyst surface and stabilizing the Au nanoparticles even at high temperatures. Gold was highly dispersed with nanoparticle sizes ranging from 1 to 2 nm when H2 was used to treat thermally the Au/TiO2-Al2O3, Au/TiO2, and Au/Al2O3 materials. In addition, the XPS technique helped elicit that Au0 and Au1+ boosted their interaction with the TiO2, Al2O3, and TiO2-Al2O3 supports by means of charge transfer, which resulted in outstanding CO oxidation activity from 0 °C. Likewise, the key factors that control the peculiar catalytic performance in the CO oxidation reaction are discussed, which represents a step forward in the versatility behavior of gold catalysts supported on mixed oxide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Albonetti S, Bonelli R, EpoupaMengou J, Femoni C, Tiozzo C, Zacchini S, Trifiro F (2008) Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catal Today 137:483–488

    Article  CAS  Google Scholar 

  • Avgouropoulos G, Papavasiliou J, Ioannides T (2008) PROX reaction over CuO–CeO2 catalyst with reformate gas containing methanol. Catal Commun 9:1656–1660

    Article  CAS  Google Scholar 

  • Bakhshayesh AM, Mohammadi MR, Fray DJ (2012) Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochim Acta 78:384–391

    Article  CAS  Google Scholar 

  • Boaro M, Vicario M, Llorca J, de Leitenburg C, Dolcetti G, Trovarelli A (2009) A comparative study of water gas shift reaction over gold and platinum supported on ZrO2 and CeO2–ZrO2. App Catal B 88:272–282

    Article  CAS  Google Scholar 

  • Bokhimi X, Boldu JL, Muñoz E, Novaro O, Lopez T, Hernandez J, Gomez R, Garcia-Ruiz A (1999) Structure and composition of the nanocrystalline phases in a MgO-TiO2 system prepared via sol−gel technique. Chem Mater 11:2716–2721

    Article  CAS  Google Scholar 

  • Bouslama M, Amamra MC, Jia Z, Ben Amar MK, Chhor O, Brinza M, AbderrabbaVignes JL, Kanaev A (2012) Nanoparticulate TiO2–Al2O3 photocatalytic media: effect of particle size and polymorphism on photocatalytic activity. ACS Catal 2(9):1884–1892

    Article  CAS  Google Scholar 

  • Brijaldo MH, Passos FB, Rojas HA et al (2014) Hydrogenation of m-dinitrobenzene over Pt supported catalysts on TiO2–Al2O3 binary oxides. Catal Lett 144:860–866

    Article  CAS  Google Scholar 

  • Camposeco R, Zanella R (2022) Activity boosting of gold nanoparticles supported on V2O5/TiO2 nanostructures for CO oxidation at low temperature. Catal Today 392–393:49–59

    Article  Google Scholar 

  • Camposeco R, Castillo S, Mejía-Centeno I, Navarrete J, Nava N (2015) Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports. Appl Surf Sci 356:115–123

    Article  CAS  Google Scholar 

  • Carlsson P, Osterlund L, Thormahlen P, Palmqvist A, Fridell E, Jansson J, Skoglundh MA (2004) Transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts. J Catal 226:422–434

    Article  CAS  Google Scholar 

  • Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl Catal A 232(1–2):159–168

    Article  CAS  Google Scholar 

  • Casapu M, Fischer A, Gänzler AM, Popescu R, Crone M, Gerthsen D, Türk M, Grunwaldt JD (2016) Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al2O3. ACS Catal 7:343–355

    Article  Google Scholar 

  • Date M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43(16):2129–2132

    Article  CAS  Google Scholar 

  • Duan A, Li R, Jiang G, Gao J, Zhao Z, Wan G, Zhang D, Huang W, Chung KH (2009) Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel. Catal Today 140(3–4):187–191

    Article  CAS  Google Scholar 

  • Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. In: Advances in catalysis, vol 28. Academic Press, Cambridge, pp 1–78

  • Galindo I, de Los Reyes J (2007) Effect of alumina–titania supports on the activity of Pd, Pt and bimetallic Pd–Pt catalysts for hydrorefining applications. Fuel Process Technol 88(9):859–863

    Article  CAS  Google Scholar 

  • Gavrila D, Georgakab A, Loukopoulosb V et al (2006) On the mechanism of selective CO oxidation on nanosized Au/γ-Al2O3 catalysts. Gold Bull 39:192–199

    Article  Google Scholar 

  • Glez V, Castillo S, Morán-Pineda M, Zanella R, Gomez R (2009) Effect of TiO2 In2O3 and TiO2 Al2O3 sol-gel supports on the morphology of gold nanoparticles. J Nano Res 5:1–12

    Article  Google Scholar 

  • Gómez-Cortés A, Díaz G, Zanella R, Ramírez H, Santiago P, Saniger JM (2009) Au-Ir/TiO2 prepared by deposition precipitation with urea: improved activity and stability in CO oxidation. J Phys Chem C 113:9710–9720

    Article  Google Scholar 

  • Gualteros JAD, Garcia MAS, da Silva AGM et al (2019) Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. J Mater Sci 54:238–251

    Article  CAS  Google Scholar 

  • Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T (2016) Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew Chem Int 55:2820–2824

    Article  CAS  Google Scholar 

  • Grunwaldt JD, Maciejewski M, Becker OS, Fabrizioli P, Baiker A (1999) Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J Catal 186:458–469

    Article  CAS  Google Scholar 

  • Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  • Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R (2021) Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials 11(8):2033

    Article  CAS  Google Scholar 

  • Huang W, Duan A, Zhao Z, Wan G, Jiang G, Dou T (2008) Ti-modified alumina supports prepared by sol–gel method used for deep HDS catalysts. Catal Today 131:314–321

    Article  CAS  Google Scholar 

  • Lakshmanan P, Park J, Park E (2014) Recent advances in preferential oxidation of CO in H2 over gold catalysts. Catal Surv Asia 18(2–3):75–88

    Article  CAS  Google Scholar 

  • Lopez T, Bosch P, Tzompantzi F, Gomez R, Navarrete J, Lopez-Salinas E, Llanos ME (2000) Effect of sulfation methods on TiO2–SiO2 sol–gel catalyst acidity. Appl Catal A 197:107–117

    Article  CAS  Google Scholar 

  • Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32

    Article  CAS  Google Scholar 

  • Masoud N, Partsch T, de Jong KP (2019) Thermal stability of oxide-supported gold nanoparticles. Gold Bull 52:105–114

    Article  CAS  Google Scholar 

  • Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom 71:249–261

    Article  CAS  Google Scholar 

  • Morán-Pineda M, Castillo S, Asomoza M, Gomez R (2002) Al2O3-TiO2 sol-gel mixed oxides as suitable supports for the reduction of NO by CO. React Kinet Catal Lett 76:75–81

    Article  Google Scholar 

  • Newton M (2017) Time resolved operando X-ray techniques in catalysis, a case study: CO oxidation by O2 over Pt surfaces and alumina supported Pt catalysts. Catalysts 7(2):58

    Article  Google Scholar 

  • Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal Lett 51:53–58

    Article  CAS  Google Scholar 

  • Oliveira RL, Bitencourt IG, Passos FB (2013) Partial oxidation of methane to syngas on Rh/Al2O3 and Rh/Ce-ZrO2 catalysts. J Braz Chem Soc 24:68–75

    Article  CAS  Google Scholar 

  • Reddy BM, Rao KN, Reddy GK, Bharali PJ (2006) Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole. Mol Catal A 253(1):44–51

    Article  CAS  Google Scholar 

  • Romero-Sarria F, Penkova A, Martinez LM, Centeno MA, Hadjiivanov K, Odriozola JA (2008) Role of water in the CO oxidation reaction on Au/CeO2: modification of the surface properties. Appl Catal B 84:119–124

    Article  CAS  Google Scholar 

  • Saavedra J, Pursell CJ, Chandler BD (2018) CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common water-assisted mechanism. J Am Chem Soc 140(10):3712–3723

    Article  CAS  Google Scholar 

  • Salanov AN, Savchenko VI (1985) TD and AES studies of the interaction of oxygen with Rh(100). React Kinet Catal Lett 29:101–109

    Article  CAS  Google Scholar 

  • Salomons S, Votsmeier M, Hayes RE, Drochner A, Vogel H, Gieshof J (2006) CO and H2 oxidation on a platinum monolith diesel oxidation catalyst. Catal Today 117:491–497

    Article  CAS  Google Scholar 

  • Soares JMC, Morrall P, Crossley A, Harris P, Bowker M (2003) Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts. J Catal 219:17–24

    Article  CAS  Google Scholar 

  • Tavizón-Pozos, JA, Suárez-Toriello VA, de los Reyes JA, Guevara-Lara A, Pawelec B, Fierro JLG, Vrinat M, Geantet C (2016) Deep hydrodesulfurization of dibenzothiophenes over niw sulfide catalysts supported on sol-gel titania-alumina. Top Catal 59:241–251

  • Trautmann S, Baerns M (1994) Infrared spectroscopic studies of CO adsorption on rhodium supported by SiO2, Al2O3, and TiO2. J Catal 150:335–344

    Article  CAS  Google Scholar 

  • Tsai Y, Chao H, Lin H (2009) Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes. J of Mol Catal A Chem 298:115–124

    Article  CAS  Google Scholar 

  • Valange S, Védrine J (2018) General and prospective views on oxidation reactions in heterogeneous catalysis. Catalysts 8:483

    Article  Google Scholar 

  • Wenfu Y, Zhen M, Shannon M, Jian J, Edward H, Steven O, Sheng D (2008) Novel Au/TiO2/Al2O3·xH2O catalysts for CO oxidation. Catal Lett 21(3–4):209–218

    Google Scholar 

  • Wu S, Han H, Tai Q, Zhang J, Xu S, Zhou C, Yang Y, Hu H, Chen B, Zhao X (2008) Improvement in dye-sensitized solar cells employing TiO2 electrodes coated with Al2O3 by reactive direct current magnetron sputtering. J Power Source 182(1):119–123

    Article  CAS  Google Scholar 

  • Yablonskii GS, Lazman MZ (1996) New correlations to analyze isothermal critical phenomena in heterogeneous catalysis reactions (“Critical simplification”, “hysteresis thermodynamics”). React Kinet Catal Lett 59:145–150

    Article  CAS  Google Scholar 

  • Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis-nitrogen-carbon-doped TiO2 film. App Surf Sci 253:1988–1994

    Article  CAS  Google Scholar 

  • Zanella R, Louis C (2005) Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catal Today 107–108:768–777

    Article  Google Scholar 

  • Zanella R, Giorgio S, Shin CH, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367

    Article  CAS  Google Scholar 

  • Zhang ZJ, Yates T (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the CB A1-S-18269 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN104022 grant.

Funding

Consejo Nacional de Ciencia y Tecnología (CONACYT) through the CB A1-S-18269 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN104022 grant.

Author information

Authors and Affiliations

Authors

Contributions

Roberto Camposeco: formal analysis, writing—original draft preparation, conceptualization, and validation; investigation; Rodolfo Zanella: formal analysis, investigation, writing—original draft preparation, supervision, and project administration.

Corresponding author

Correspondence to Rodolfo Zanella.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Zanella, R. Catalytic behavior of gold nanoparticles supported on a TiO2-Al2O3 mixed oxide for CO oxidation at low temperature. Environ Sci Pollut Res 29, 76992–77006 (2022). https://doi.org/10.1007/s11356-022-21076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21076-2

Keywords

Navigation