Skip to main content
Log in

Correlation Between Oxygen Reduction Reaction and Oxidative Dehydrogenation Activities Over Nanostructured Carbon Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nitrogen containing nano-structured carbon catalysts were grown on Fe/Al2O3 and Ni/Al2O3 supports using acetonitrile pyrolysis. The post-pyrolysis samples were tested for activity in the oxygen reduction reaction (ORR) and oxidative dehydrogenation (ODH) reaction. Samples were characterized using BET, XPS and TEM. The samples grown over iron containing supports gave the highest activity in both reactions. There was a strong correlation between ODH and ORR activity suggesting the possibility of a common active site between reactions with the quinone/hydroquinone group being a possible candidate. XPS analysis supported this hypothesis showing that catalysts with a higher percentage of oxygen in the form of quinones tend to have the highest ORR and ODH activity. XPS analysis also demonstrated that samples with higher pyridinic nitrogen content, which is a marker for edge plane exposure and may be a part of the ORR active site, gave higher ORR and ODH activity. TEM images confirm that samples with high pyridinic nitrogen content tend to form structures with higher edge plane exposure. Because the active site, regardless of its identity, likely lies on the graphitic edge plane, this leaves the possibility that a common active site is not necessary to explain the correlation between ODH and ORR activity.

Graphical Abstract

Nitrogen containing, nano-structured carbon catalysts were shown to exhibit a correlation between the activities of oxidative dehydrogenation and electrocatalytic oxygen reduction reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jahnke H, Schonborn M, Zimmerman G (1976) Fortschr Chem Forsch 61:133

    CAS  Google Scholar 

  2. Jasinski R (1964) Nature 201:1212

    Article  CAS  Google Scholar 

  3. Yeager E (1984) Electrochim Acta 29:1527

    Article  CAS  Google Scholar 

  4. Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) J Electrochem Soc 144:218

    Article  CAS  Google Scholar 

  5. Villers D, Jacques-Bedard X, Dodelet JP (2004) J Electrochem Soc 151:A1507

    Article  CAS  Google Scholar 

  6. Lefevre M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705

    Article  CAS  Google Scholar 

  7. Jaouen F, Lefevre M, Dodelet J-P, Cai M (2006) J Phys Chem B 110:5553

    Article  CAS  Google Scholar 

  8. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707

    Article  CAS  Google Scholar 

  9. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83

    Article  CAS  Google Scholar 

  10. Matter PH, Wang E, Ozkan US (2006) J Catal 243:395

    Article  CAS  Google Scholar 

  11. Kinoshita K (1988) Carbon, electrochemical and physiochemical properties. Wiley Interscience, New York

    Google Scholar 

  12. Kumaraguru SP, Subramanian NP, Colon H, Popov BN (2006) ECS Trans 1:27

    CAS  Google Scholar 

  13. Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042

    Article  CAS  Google Scholar 

  14. Subramanian NP, Kumaraguru SP, Colon-Mercado H, Kim H, Popov BN, Black T, Chen DA (2006) J Power Sources 157:56

    Article  CAS  Google Scholar 

  15. Nabae Y, Yamanaka I, Otsuka K (2005) Appl Catal A-Gen 280:149

    Article  CAS  Google Scholar 

  16. Pereira MFR, Orfao JJM, Figueiredo JL (1999) Appl Catal A-Gen 184:153

    Article  CAS  Google Scholar 

  17. Pereira MFR, Orfao JJM, Figueiredo JL (2000) Appl Catal A-Gen 196:43

    Article  CAS  Google Scholar 

  18. Maldonado-Hodar FJ, Palma Madeira LM, Farinha Portela M (1996) J Catal 164:399

    Article  CAS  Google Scholar 

  19. Maldonado-Hodar FJ, Madeira LM, Portela MF (1999) Appl Catal A-Gen 178:49

    Article  CAS  Google Scholar 

  20. Vrieland GE, Menon PG (1991) Appl Catal 77:1

    Article  CAS  Google Scholar 

  21. Pereira MFR, Figueiredo JL, Orfao JJM, Serp P, Kalck P, Kihn Y (2004) Carbon 42:2807

    Article  CAS  Google Scholar 

  22. Pereira MFR, Orfao JJM, Figueiredo JL (2001) Appl Catal A-Gen 218:307

    Article  CAS  Google Scholar 

  23. Macia-Agullo JA, Cazorla-Amoros D, Linares-Solano A, Wild U, Su DS, Schlogl R (2005) Catal Today 102–103:248

    Article  Google Scholar 

  24. Su DS, Maksimova N, Delgado JJ, Keller N, Mestl G, Ledoux MJ, Schloegl R (2005) Catal Today 102–103:110

    Article  Google Scholar 

  25. Maksimova N, Mestl G, Schlogl R (2001) Stud Surf Sci Catal 133:383

    Article  CAS  Google Scholar 

  26. Maksimova NI, Roddatis VV, Mestl G, Ledoux M, Schlogl R (2000) Eurasian Chemico-Technological J 2:231

    CAS  Google Scholar 

  27. Keller N, Maksimova NI, Roddatis VV, Schur M, Mestl G, Butenko YV, Kuznetsov VL, Schlogl R (2002) Angew Chem Int Ed 41:1885

    Article  CAS  Google Scholar 

  28. Mestl G, Maksimova NI, Keller N, Roddatis VV, Schlogl R (2001) Angew Chem Int Ed 40:2066

    Article  CAS  Google Scholar 

  29. Matter PH, Ozkan US (2006) Catal Lett 109:115

    Article  CAS  Google Scholar 

  30. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374

    Article  CAS  Google Scholar 

  31. Watson RB, Ozkan US (2002) J Phys Chem B 106:6930

    Article  CAS  Google Scholar 

  32. Watson RB, Ozkan US (2003) J Mol Catal A-Chem 194:115

    Article  CAS  Google Scholar 

  33. Watson RB, Lashbrook S, Ozkan US (2004) J Mol Catal A-Chem 208:233

    Article  CAS  Google Scholar 

  34. Liu C, Ozkan US, Phys J (2005) Chem A 109:1260

    CAS  Google Scholar 

  35. Liu C, Watson RB, Ozkan US (2006) Top Catal 41:63

    Article  CAS  Google Scholar 

  36. Liu C, Ozkan US (2004) J Mol Catal A-Chem 220:53

    Article  CAS  Google Scholar 

  37. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal 264:73

    Article  CAS  Google Scholar 

  38. Biddinger EJ, von Deak D, Ozkan US (2009) Top Catal 52:1566

    Article  CAS  Google Scholar 

  39. Boehm HP (1994) Carbon 32:759

    Article  CAS  Google Scholar 

  40. Boehm HP (2002) Carbon 40:145

    Article  CAS  Google Scholar 

  41. Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Carbon 45:785

    Article  CAS  Google Scholar 

  42. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379

    Article  CAS  Google Scholar 

  43. Zielke U, Huttinger KJ, Hoffman WP (1996) Carbon 34:983

    Article  CAS  Google Scholar 

  44. Biddinger EJ, Ozkan US (2007) Top Catal 46:339

    Article  CAS  Google Scholar 

  45. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the U.S. Department of Energy Basic Energy Sciences through the grant DE-FG02-07ER15896 is gratefully acknowledged. The authors also acknowledge NSF support for acquisition of the XPS system under NSF-DMR grant #0114098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, M.P., Biddinger, E.J., Matter, P.H. et al. Correlation Between Oxygen Reduction Reaction and Oxidative Dehydrogenation Activities Over Nanostructured Carbon Catalysts. Catal Lett 136, 1–8 (2010). https://doi.org/10.1007/s10562-010-0304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0304-5

Keywords

Navigation