Skip to main content

Advertisement

Log in

Quetiapine inhibits osteoclastogenesis and prevents human breast cancer-induced bone loss through suppression of the RANKL-mediated MAPK and NF-κB signaling pathways

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Bone loss is one of the major complications of advanced cancers such as breast cancer, prostate cancer, and lung cancer. Extensive research has revealed that the receptor activator of NF-κB ligand (RANKL), which is considered to be a key factor in osteoclast differentiation, plays an important role in cancer-associated bone resorption. Therefore, agents that can suppress this bone loss have therapeutic potential. In this study, we detected whether quetiapine (QUE), a commonly used atypical antipsychotic drug, can inhibit RANKL-induced osteoclast differentiation in vitro and prevent human breast cancer-induced bone loss in vivo. RAW 264.7 cells and bone marrow-derived macrophages (BMMs) were used to detect inhibitory effect of QUE on osteoclastogenesis in vitro. Mouse model of breast cancer metastasis to bone was used to test suppressive effect of QUE on breast cancer-induced bone loss in vivo. Our results show that QUE can inhibit RANKL-induced osteoclast differentiation from RAW 264.7 cells and BMMs without signs of cytotoxicity. Moreover, QUE reduced the occurrence of MDA-MB-231 cell-induced osteolytic bone loss by suppressing the differentiation of osteoclasts. Finally, molecular analysis revealed that it is by inhibiting RANKL-mediated MAPK and NF-κB signaling pathways that QUE suppressed the osteoclast differentiation. We demonstrate, for the first time, the novel suppressive effects of QUE on RANKL-induced osteoclast differentiation in vitro and human breast cancer-induced bone loss in vivo, suggesting that QUE may be a potential therapeutic drug for osteolysis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s

    Article  PubMed  Google Scholar 

  2. Engel J, Eckel R, Kerr J, Schmidt M, Furstenberger G, Richter R, Sauer H, Senn HJ, Holzel D (2003) The process of metastasisation for breast cancer. Eur J Cancer 39(12):1794–1806

    Article  CAS  PubMed  Google Scholar 

  3. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617

    Article  CAS  PubMed  Google Scholar 

  4. Canon J, Bryant R, Roudier M, Branstetter DG, Dougall WC (2012) RANKL inhibition combined with tamoxifen treatment increases anti-tumor efficacy and prevents tumor-induced bone destruction in an estrogen receptor-positive breast cancer bone metastasis model. Breast Cancer Res Treat 135(3):771–780

    Article  CAS  PubMed  Google Scholar 

  5. Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88(12 Suppl):2892–2898

    Article  CAS  PubMed  Google Scholar 

  6. Roodman GD, Dougall WC (2008) RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treat Rev 34(1):92–101

    Article  CAS  PubMed  Google Scholar 

  7. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T (2011) Homeostasis through RANKL expression. Nat Med 17(10):1231–1234

    Article  CAS  PubMed  Google Scholar 

  8. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342

    Article  CAS  PubMed  Google Scholar 

  9. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  PubMed  Google Scholar 

  10. Mariotti A (2008) Bisphosphonates and osteonecrosis of the jaws. J Dent Educ 72(8):919–929

    PubMed  Google Scholar 

  11. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514

    Article  CAS  PubMed  Google Scholar 

  13. Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W, Li X, Dyck LE, Devon RM, Deng Y, Li XM (2008) Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatr 13(7):697–708

    Article  CAS  Google Scholar 

  14. Kim H, Bang J, Chang HW, Kim JY, Park KU, Kim SH, Lee KJ, Cho CH, Hwang I, Park SD, Ha E, Jung SW (2012) Anti-inflammatory effect of quetiapine on collagen-induced arthritis of mouse. Eur J Pharmacol 678(1–3):55–60

    Article  CAS  PubMed  Google Scholar 

  15. Xu H, Wang H, Zhuang L, Yan B, Yu Y, Wei Z, Zhang Y, Dyck LE, Richardson SJ, He J, Li X, Kong J, Li XM (2008) Demonstration of an anti-oxidative stress mechanism of quetiapine: implications for the treatment of Alzheimer’s disease. FEBS J 275(14):3718–3728

    Article  CAS  PubMed  Google Scholar 

  16. Bi X, Yan B, Fang S, Yang Y, He J, Li XM, Kong J (2009) Quetiapine regulates neurogenesis in ischemic mice by inhibiting NF-kappaB p65/p50 expression. Neurol Res 31(2):159–166

    Article  CAS  PubMed  Google Scholar 

  17. Pereira A, Zhang B, Malcolm P, Sugiharto-Winarno A, Sundram S (2014) Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci 15(1):30

    Article  PubMed Central  PubMed  Google Scholar 

  18. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649

    Article  CAS  PubMed  Google Scholar 

  19. Mei F, Guo S, He Y, Wang L, Wang H, Niu J, Kong J, Li X, Wu Y, Xiao L (2012) Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation. PLoS ONE 7(8):e42746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, Pike JW (2001) Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology 142(9):3800–3808

    Article  CAS  PubMed  Google Scholar 

  21. Remen KM, Henning P, Lerner UH, Gustafsson JA, Andersson G (2011) Activation of liver X receptor (LXR) inhibits receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation in an LXRbeta-dependent mechanism. J Biol Chem 286(38):33084–33094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Suda T, Kobayashi K, Jimi E, Udagawa N, Takahashi N (2001) The molecular basis of osteoclast differentiation and activation. Novartis Found Symp 232:235–247 (discussion 247-250)

    Article  CAS  PubMed  Google Scholar 

  23. Gannon SC, Cantley MD, Haynes DR, Hirsch R, Bartold PM (2013) Azithromycin suppresses human osteoclast formation and activity in vitro. J Cell Physiol 228(5):1098–1107

    Article  CAS  PubMed  Google Scholar 

  24. Zhai Z, Qu X, Yan W, Li H, Liu G, Liu X, Tang T, Qin A, Dai K (2014) Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res Treat 144(1):33–45

    Article  CAS  PubMed  Google Scholar 

  25. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12(20 Pt 2):6213s–6216s

    Article  CAS  PubMed  Google Scholar 

  26. Roodman GD (2004) Mechanisms of bone metastasis. New Engl J Med 350(16):1655–1664

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–96

    Article  CAS  PubMed  Google Scholar 

  28. Lipton A (2010) Bone continuum of cancer. Am J Clin Oncol 33(3 Suppl):S1–7

    Article  CAS  PubMed  Google Scholar 

  29. Wong MH, Stockler MR, Pavlakis N (2012) Bisphosphonates and other bone agents for breast cancer. The Cochrane database of systematic reviews 2:CD003474

  30. Lipton A (2010) Should bisphosphonates be utilized in the adjuvant setting for breast cancer? Breast Cancer Res Treat 122(3):627–636

    Article  CAS  PubMed  Google Scholar 

  31. Iranikhah M, Wilborn TW, Wensel TM, Ferrell JB (2012) Denosumab for the prevention of skeletal-related events in patients with bone metastasis from solid tumor. Pharmacotherapy 32(3):274–284

    Article  CAS  PubMed  Google Scholar 

  32. Grey A (2010) Teriparatide for bone loss in the jaw. N Engl J Med 363(25):2458–2459

    Article  CAS  PubMed  Google Scholar 

  33. Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34(3):285–290

    Article  CAS  PubMed  Google Scholar 

  34. Roodman GD (1996) Advances in bone biology: the osteoclast. Endocr Rev 17(4):308–332

    CAS  PubMed  Google Scholar 

  35. Grases F, Perello J, Sanchis P, Isern B, Prieto RM, Costa-Bauza A, Santiago C, Ferragut ML, Frontera G (2009) Anticalculus effect of a triclosan mouthwash containing phytate: a double-blind, randomized, three-period crossover trial. J Periodontal Res 44(5):616–621

    Article  CAS  PubMed  Google Scholar 

  36. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275(40):31155–31161

    Article  CAS  PubMed  Google Scholar 

  37. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T, Kukita T, Yoshioka K, Rao A, Yoneda T (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114(4):475–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD, Gutkind JS (2005) Regulation of the t ranscriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 280(42):35081–35084

    Article  CAS  PubMed  Google Scholar 

  39. Lu X, Ito Y, Atsawasuwan P, Dangaria S, Yan X, Wu T, Evans CA, Luan X (2013) Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway. Bone 54(1):157–168

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Q, Wang X, Liu Y, He A, Jia R (2010) NFATc1: functions in osteoclasts. Int J Biochem Cell Biol 42(5):576–579

    Article  CAS  PubMed  Google Scholar 

  41. Sung B, Oyajobi B, Aggarwal BB (2012) Plumbagin inhibits osteoclastogenesis and reduces human breast cancer-induced osteolytic bone metastasis in mice through suppression of RANKL signaling. Mol Cancer Ther 11(2):350–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discovery 3(1):17–26

    Article  CAS  Google Scholar 

  43. Nemeroff CB, Kinkead B, Goldstein J (2002) Quetiapine: preclinical studies, pharmacokinetics, drug interactions, and dosing. J Clin Psychiat 63(Suppl 13):5–11

    CAS  Google Scholar 

  44. Pereira A, Zhang B, Malcolm P, Sugiharto-Winarno A, Sundram S (2014) Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci 15:30

    Article  PubMed Central  PubMed  Google Scholar 

  45. Yi T, Lee HL, Cha JH, Ko SI, Kim HJ, Shin HI, Woo KM, Ryoo HM, Kim GS, Baek JH (2008) Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross-talking with RANK signaling. J Cell Physiol 217(2):409–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by grants from the National Natural Science Foundation of China (81271979), and National Basic Research Program of China (973 Program, No. 2010CB529400). The authors thank Yan Yin for carefully proofreading the manuscript and providing valuable comments. The authors also thank Dr. Yue Zhou and Dr. Jianqin Niu for their direction, advice, and teachings.

Conflicts of interest

All the authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Xiao or Tongwei Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, W., Hu, X. et al. Quetiapine inhibits osteoclastogenesis and prevents human breast cancer-induced bone loss through suppression of the RANKL-mediated MAPK and NF-κB signaling pathways. Breast Cancer Res Treat 149, 705–714 (2015). https://doi.org/10.1007/s10549-015-3290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3290-x

Keywords

Navigation