Skip to main content

Advertisement

Log in

A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) plays a critical role in promoting tumor cell growth and is frequently activated in breast cancer. In preclinical studies, the antitumor activity of mTOR inhibitors is attenuated by feedback up-regulation of AKT mediated in part by Insulin-like growth factor type 1 receptor (IGF-1R). We designed a phase I trial to determine the maximum-tolerated dose (MTD) and pharmacodynamic effects of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer refractory to standard therapies. A 3 + 3 Phase I design was chosen. Temsirolimus and Cixutumumab were administered intravenously on days 1, 8, 15, and 22 of a 4-week cycle. Of the 26 patients enrolled, four did not complete cycle 1 because of disease progression (n = 3) or comorbid condition (n = 1) and were replaced. The MTD was determined from the remaining 22 patients, aged 34–72 (median 48) years. Most patients (86 %) had estrogen receptor positive cancer. The median number of prior chemotherapy regimens for metastatic disease was 3. The MTD was determined to be Cixutumumab 4 mg/kg and temsirolimus 15 mg weekly. Dose-limiting toxicities (DLTs) included mucositis, neutropenia, and thrombocytopenia. Other adverse events included grade 1/2 fatigue, anemia, and hyperglycemia. No objective responses were observed, but four patients experienced stable disease that lasted for at least 4 months. Compared with baseline, there was a significant increase in the serum levels of IGF-1 (p < 0.001) and IGFBP-3 (p = 0.019) on day 2. Compared with day 2, there were significant increases in the serum levels of IGF-1 (p < 0.001), IGF-2 (p = 0.001), and IGFBP-3 (p = 0.019) on day 8. A phase II study in women with metastatic breast cancer is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559

    Article  PubMed  CAS  Google Scholar 

  2. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    Article  PubMed  CAS  Google Scholar 

  3. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  PubMed  CAS  Google Scholar 

  4. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64(21):7678–7681

    Article  PubMed  CAS  Google Scholar 

  5. Garcia JM, Silva J, Pena C, Garcia V, Rodriguez R, Cruz MA, Cantos B, Provencio M, Espana P, Bonilla F (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosom Cancer 41(2):117–124

    Article  PubMed  CAS  Google Scholar 

  6. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    Article  PubMed  CAS  Google Scholar 

  7. Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G et al (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92(15):1252–1259

    Article  PubMed  CAS  Google Scholar 

  8. Andersen CL, Monni O, Wagner U, Kononen J, Barlund M, Bucher C, Haas P, Nocito A, Bissig H, Sauter G et al (2002) High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays. Am J Pathol 161(1):73–79

    Article  PubMed  CAS  Google Scholar 

  9. Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  PubMed  CAS  Google Scholar 

  10. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V et al (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23(23):5314–5322

    Article  PubMed  CAS  Google Scholar 

  11. Sawyers CL (2003) Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4(5):343–348

    Article  PubMed  CAS  Google Scholar 

  12. Goncalves R, Ma C, Luo J, Suman V, Ellis MJ (2012) Use of neoadjuvant data to design adjuvant endocrine therapy trials for breast cancer. Nat Rev Clin Oncol 9(4):223–229

    Article  PubMed  CAS  Google Scholar 

  13. Sun S-Y, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65(16):7052–7058

    Article  PubMed  CAS  Google Scholar 

  14. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508

    Article  PubMed  Google Scholar 

  15. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940

    Article  PubMed  CAS  Google Scholar 

  16. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon y Cajal S, Jones S, Vidal L et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26(10):1603–1610

    Google Scholar 

  17. Cho DC (2005) Low expression of surrogates for mTOR pathway activation predicts resistance to CCI-779 in patients with advanced renal cell carcinoma (RCC). In: Proceedings of 17th Symp Mol Targets Cancer Thera November 2005, Philadelphia, USA, C137

  18. Galvan V, Logvinova A, Sperandio S, Ichijo H, Bredesen DE (2003) Type 1 insulin-like growth factor receptor (IGF-IR) signaling inhibits apoptosis signal-regulating kinase 1 (ASK1). J Biol Chem 278(15):13325–13332

    Article  PubMed  CAS  Google Scholar 

  19. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4(10):1533–1540

    Article  PubMed  CAS  Google Scholar 

  20. Thimmaiah KN, Easton J, Huang S, Veverka KA, Germain GS, Harwood FC, Houghton PJ (2003) Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3′-kinase-Akt signaling pathways. Cancer Res 63(2):364–374

    PubMed  CAS  Google Scholar 

  21. D’Ambrosio C, Ferber A, Resnicoff M, Baserga R (1996) A soluble insulin-like growth factor I receptor that induces apoptosis of tumor cells in vivo and inhibits tumorigenesis. Cancer Res 56(17):4013–4020

    PubMed  Google Scholar 

  22. Prager D, Li HL, Asa S, Melmed S (1994) Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci USA 91(6):2181–2185

    Article  PubMed  CAS  Google Scholar 

  23. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518

    Article  PubMed  CAS  Google Scholar 

  24. Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D (2006) Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer 95(9):1220–1228

    Article  PubMed  CAS  Google Scholar 

  25. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92(18):1472–1489

    Article  PubMed  CAS  Google Scholar 

  26. Gooch JL, Van Den Berg CL, Yee D (1999) Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death-proliferative and anti-apoptotic effects. Breast Cancer Res Treat 56(1):1–10

    Article  PubMed  CAS  Google Scholar 

  27. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N (1990) Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50(1):48–53

    PubMed  CAS  Google Scholar 

  28. Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A, Lippman ME, Rosen N (1988) Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res 48(23):6691–6696

    PubMed  CAS  Google Scholar 

  29. Huff KK, Kaufman D, Gabbay KH, Spencer EM, Lippman ME, Dickson RB (1986) Secretion of an insulin-like growth factor-I-related protein by human breast cancer cells. Cancer Res 46(9):4613–4619

    PubMed  CAS  Google Scholar 

  30. Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, Camuso AE, Gottardis M, Greer AF, Ho CP et al (2005) Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65(9):3781–3787

    Article  PubMed  CAS  Google Scholar 

  31. Salatino M, Schillaci R, Proietti CJ, Carnevale R, Frahm I, Molinolo AA, Iribarren A, Charreau EH, Elizalde PV (2004) Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves inactivation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone receptor activity. Oncogene 23(30):5161–5174

    Article  PubMed  CAS  Google Scholar 

  32. Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull FC, Jr, Allred DC, Osborne CK (1989) Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84(5):1418–1423

    Google Scholar 

  33. Sachdev D, Yee D (2006) Inhibitors of insulin-like growth factor signaling: a therapeutic approach for breast cancer. J Mammary Gland Biol Neoplasia 11(1):27–39

    Article  PubMed  Google Scholar 

  34. Peyrat JP, Bonneterre J, Beuscart R, Djiane J, Demaille A (1988) Insulin-like growth Factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors. Cancer Res 48(22):6429–6433

    PubMed  CAS  Google Scholar 

  35. Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, Bassi R, Abdullah R, Hooper AT, Koo H et al (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63(24):8912–8921

    PubMed  CAS  Google Scholar 

  36. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL, Plymate SR (2005) In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 11(8):3065–3074

    Article  PubMed  CAS  Google Scholar 

  37. Naing A, Kurzrock R, Burger A, Gupta S, Lei X, Busaidy N, Hong D, Chen HX, Doyle LA, Heilbrun LK et al (2011) Phase I trial of Cixutumumab combined with temsirolimus in patients with advanced cancer. Clin Cancer Res 17(18):6052–6060

    Article  PubMed  CAS  Google Scholar 

  38. Fleming G, Ma C, Huo D, Sattar H, Tretiakova M, Lin L, Hahn O, Olopade FO, Nanda R, Hoffman P et al (2012) Phase II trial of temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat 136(2):355–363

    Article  PubMed  CAS  Google Scholar 

  39. Malempati S, Weigel B, Ingle AM, Ahern CH, Carroll JM, Roberts CT, Reid JM, Schmechel S, Voss SD, Cho SY et al (2012) Phase I/II trial and pharmacokinetic study of Cixutumumab in pediatric patients with refractory solid tumors and Ewing Sarcoma: a report from the children’s oncology group. J Clin Oncol 30(3):256–262

    Article  PubMed  CAS  Google Scholar 

  40. Roop RP, Ma CX (2012) Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Future Oncol 8(3):273–292

    Article  PubMed  CAS  Google Scholar 

  41. Nahta R (2012) Deciphering the role of insulin-like growth factor-I receptor in trastuzumab resistance. Chemother Res Pract 2012:648965

    PubMed  Google Scholar 

  42. Fox EM, Miller TW, Balko JM, Kuba MG, Sánchez V, Smith RA, Liu S, González-Angulo AM, Mills GB, Ye F et al (2011) A Kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 71(21):6773–6784

    Article  PubMed  CAS  Google Scholar 

  43. Hou X, Huang F, Macedo LF, Harrington SC, Reeves KA, Greer A, Finckenstein FG, Brodie A, Gottardis MM, Carboni JM et al (2011) Dual IGF-1R/InsR inhibitor BMS-754807 synergizes with hormonal agents in treatment of estrogen-dependent breast cancer. Cancer Res 71(24):7597–7607

    Article  PubMed  CAS  Google Scholar 

  44. Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero J-M, Freyer G, Abadie-Lacourtoisie S, Eymard J-C, Debled M, Spaëth D et al (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30(22):2718–2724

    Article  PubMed  CAS  Google Scholar 

  45. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G et al (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27(16):2630–2637

    Article  PubMed  CAS  Google Scholar 

  46. Steelman LS, Navolanic PM, Sokolosky ML, Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Wong EW, Stadelman KM, Terrian DM et al (2008) Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 27(29):4086–4095

    Article  PubMed  CAS  Google Scholar 

  47. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091

    Article  PubMed  CAS  Google Scholar 

  48. Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, Russo M, Cancelliere C, Zecchin D, Mazzucchelli L et al (2010) Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 120(8):2858-2866.

    Google Scholar 

  49. DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M (2004) Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 15(10):1510–1516

    Article  PubMed  CAS  Google Scholar 

  50. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, Pirun M, Sander C, Socci ND, Ostrovnaya I et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338(6104):221

    Article  PubMed  CAS  Google Scholar 

  51. Crowder RJ, Phommaly C, Tao Y, Hoog J, Luo J, Perou CM, Parker JS, Miller MA, Huntsman DG, Lin L et al (2009) PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 69(9):3955–3962

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the patients and their families for participation in this study. We also thank the nurses, clinical research, and regulatory coordinators at Washington University Siteman Cancer Center, Mayo Clinic Rochester and University of Chicago. This trial was partly supported by a Career Development Award from the American Society of Clinical Oncology (C.X.M.), St. Louis Komen Foundation (C.X.M.), N01-CM62205, and N01-CM-2011-00071.

Conflict of interest

All authors disclosed no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia X. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C.X., Suman, V.J., Goetz, M. et al. A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat 139, 145–153 (2013). https://doi.org/10.1007/s10549-013-2528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2528-8

Keywords

Navigation