Skip to main content
Log in

On the Anomalous Behaviour of Scalar Flux–Variance Similarity Functions Within the Canopy Sub-layer of a Dense Alpine Forest

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Within the canopy sub-layer (CSL), variability in scalar sources and sinks are known to affect flux–variance (FV) similarity relationships for water vapour (q) and carbon dioxide (C) concentrations, yet large-scale processes may continue to play a significant role. High frequency time series data for temperature (T), q and C, collected within the CSL of an uneven-aged mixed coniferous forest in Lavarone, Italy, are used to investigate these processes within the context of FV similarity. This dataset suggests that MOST scaling describes the FV similarity function of T even though the observations are collected in the CSL, consistent with other studies. However, the measured FV similarity functions for q and C appear to have higher values than their temperature counterpart. Two hypotheses are proposed to explain the measured anomalous behaviour in the FV similarity functions for q and C when referenced to T. Respired CO2 from the forest floor leads to large positive excursions in the C time series at the canopy top thereby contributing significantly to both C variance increase and C vertical flux decrease—both leading to an anomalous increase in the FV similarity function. For q, transport of dry air from the outer-layer significantly increases both the variance and the water vapour flux. However, the expected flux increase is much smaller than the variance increase so that the net effect remains an increase in the measured FV similarity function for water vapour above its T counterpart. The hypothesis here is that identifying these events in the temporal and/or in the frequency domain and filtering them from the C and q time series partially recovers a scalar flow field that appears to follow FV similarity theory scaling. Methods for identifying both types of events in the time and frequency domains and their subsequent effects on the FV similarity functions and corollary flow variables, such as the relative transport efficiencies, are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD, Parlange MB, Katul GG, Chu CR, Stricker H (1995) Sensible heat flux from arid regions—a simple flux-variance method. Water Resour Res 31(4): 969–973

    Article  Google Scholar 

  • Andreas EL, Hill RJ, Gosz JR, Moore DI, Otto WD, Sarma AD (1998) Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorol 86(3): 379–408

    Article  Google Scholar 

  • Andreas EL, Hicks BB (2002) Comments on “critical test of the validity of Moni-Obukhov similarity during convective conditions”. J Atmos Sci 59: 2605–2607

    Article  Google Scholar 

  • Asanuma J, Tamagawa I, Ishikawa H, Ma YM, Hayashi T, Qi YQ, Wang JM (2007) Spectral similarity between scalars at very low frequencies in the unstable atmospheric surface layer over the Tibetan plateau. Boundary-Layer Meteorol 122(1): 85–103

    Article  Google Scholar 

  • Assouline S, Tyler S, Tanny J, Cohen S, Bou-Zeid E, Parlange MB, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: Measurements and scaling Analysis. Adv Water Resour 31: 160–172

    Article  Google Scholar 

  • Aubinet M, Berbigier P, Bernhofer Ch, Cescatti A, Feigenwinter C, Granier A, Grünwald Th, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different CARBOEUROFLUX sites. Boundary-Layer Meteorol 116: 63–94

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger JW, Oechel W, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Amer Meteorol Soc 82: 2415–2435

    Article  Google Scholar 

  • Bink NJ (1996) The structure of the atmospheric surface layer subject to local advection. Ph.D. Thesis, Wageningen Agricultural University, 206 pp

  • Bink NJ, Meesters GCA (1999) Comment on estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. In: Katul et al. (1995). Boundary-Layer Meteorol 84:497–502

  • Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94(1): 139–163

    Article  Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In: Haugen DA (ed) Workshop on Micrometeorology. American Meteorological Society, 392 pp

  • Cava D, Katul GG, Scrimieri A, Poggi D, Cescatti A, Giostra U (2006) Buoyancy and the sensible heat flux budget within dense canopies. Boundary-Layer Meteorol 118(1): 217–240

    Article  Google Scholar 

  • Choi TKJ, Lee H, Hong J, Asanuma J, Ishikawa H, Gao Z, Wang J, Koike T (2004) Turbulent exchange of heat, water vapor and momentum over a Tibetan praire by eddy covariance and flux-variance measurements. J Geophys Res-Atmos 109(D21): D21106

    Article  Google Scholar 

  • Cullen NJ, Steffen K, Blanken PD (2007) Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122(2): 439–455

    Article  Google Scholar 

  • Arellano JVG, Gioli B, Miglietta F, Jonker HJJ, Baltink HK, Hutjes RWA, Holtslag AAM (2004) Entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res-Atmos 109(D18): D18110

    Article  Google Scholar 

  • De Bruin HAR (1982) The energy balance at the earth’s surface: a practical approach. Ph.D. thesis, Wageningen Agricultural University. (also K.N.M.I., Sci. Rep. 81–1)

  • De Bruin HAR, Kohsiek W, Van Den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapor using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63(3): 231–257

    Article  Google Scholar 

  • De Bruin HAR (1994) Analytic solutions of the equations governing the temperature fluctuation method. Boundary-Layer Meteorol 68: 427–432

    Article  Google Scholar 

  • De Bruin HAR, Van Den Hurk BJJM, Kroon LJM (1999) On the temperature-humidity correlation and similarity. Boundary-Layer Meteorol 93: 453–468

    Article  Google Scholar 

  • Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122(1): 205–216

    Article  Google Scholar 

  • Detto M, Katul GG, Mancini M, Montaldo N, Albertson J (2008) Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agric For Meteorol (In press)

  • Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32: 519–571

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorol 113:201–224

    Article  Google Scholar 

  • Garratt JR (1978) Flux profile relations above tall vegetation. Quart J Roy Meteorol Soc 104: 199–211

    Article  Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Quart J Roy Meteorol Soc 106: 803–819

    Article  Google Scholar 

  • Garratt JR (1983) Surface influence upon vertical profiles in the nocturnal boundary layer. Boundary-Layer Meteorol 26: 69–80

    Article  Google Scholar 

  • Górska M, de Arellano JV, LeMone MA (2006) The exchange of carbon dioxide between the atmospheric boundary layer and the free atmosphere: observational and LES study. In: Extended abstract presented on the 17th AMS Symposium on Boundary Layer and Turbulence, San Diego, paper 1.6

  • Hartogensis OK, De Bruin HAR (2005) Monin-Obukhov similaruty functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116: 253–276

    Article  Google Scholar 

  • Hicks BB (1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14: 567–569

    Article  Google Scholar 

  • Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol 21: 389–402

    Article  Google Scholar 

  • Hogstrom U, Bergstrom H, Smedman AS, Halldin S, Lindroth A (1989) Turbulent exchange above a Pine forest. 1, fluxes and gradients. Boundary-Layer Meteorol 49(1–2): 197–217

    Article  Google Scholar 

  • Hogstrom U (1990) Analysis of turbulence structure in the surface-layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47(16): 1949–1972

    Article  Google Scholar 

  • Hogstrom U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1): 101–124

    Article  Google Scholar 

  • Juang JY, Katul GG, Siqueira MBS, Stoy PC, Palmroth S, McCarthy HR, Kim HS, Oren R (2006) Modeling nighttime ecosystem respiration from measured CO2 concentration and air temperature profiles using inverse methods. J Geophys Res-Atmos 111(D8): D08s05

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, New York, p 289

    Google Scholar 

  • Katul G, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and nonuniform terrain. Boundary-Layer Meteorol 74(3): 237–260

    Article  Google Scholar 

  • Katul GG, Albertson JD, Hsieh CI, Conklin PS, Sigmon JT, Parlange MB, Knoerr KR (1996) The “inactive” eddy motion and the large-scale turbulent pressure fluctuations in the dynamic sublayer. J Atmos Sci 53(17): 2512–2524

    Article  Google Scholar 

  • Katul GG, Hsieh CI (1999) A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorol 90(2): 327–338

    Article  Google Scholar 

  • Katul GG, Sempreviva AM, Cava D (2008) The temperature-humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2): 263–278

    Article  Google Scholar 

  • Kohsiek W, De Bruin HAR, The H, Van Den Hurk B (1993) Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements. Boundary-Layer Meteorol 63(3): 231–230

    Article  Google Scholar 

  • Kroon LJM, De Bruin HAR (1995) The Crau field experiment—turbulent exchange in the surface-layer under conditions of strong local advection. J Hydrol 166(3–4): 327–351

    Article  Google Scholar 

  • Kustas WP, Blanford JH, Stannard DI, Daughtry CST, Nichols WD, Weltz MA (1994) Local energy flux estimates for unstable conditions using variance data in semiarid rangelands. Water Resour Res 30(5): 1351–1361

    Article  Google Scholar 

  • Lamaud E, Irvine M (2006) Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120(1): 87–109

    Article  Google Scholar 

  • Leclerc MY, Beissner KC, Shaw RH, Den Hartog G, Neumann HH (1990) The influence of atmospheric stability on the budgets of the reynolds stress and turbulent kinetic energy within and above a deciduous forest. J Appl Meteorol 29: 916–933

    Article  Google Scholar 

  • Lyons TJ, Fuqin L, Hacker JM, Cheng WL, Huang XM (2001) Regional turbulent statistics over contrasting natural surfaces. Meteorol Atmos Phys 78(3–4): 183–194

    Article  Google Scholar 

  • Mahrt L (1991a) Boundary-layer moisture regimes. Quart J Roy Meteorol Soc 117(497): 151–176

    Article  Google Scholar 

  • Mahrt L (1991b) Eddy asymmetry in the sheared heated boundary-layer. J Atmos Sci 48(3): 472–492

    Article  Google Scholar 

  • Marcolla B, Pitacco A, Cescatti A (2003) Canopy architecture and turbulence structure in a coniferous forest. Boundary-Layer Meteorol 108(1): 39–59

    Article  Google Scholar 

  • McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102(2): 161–175

    Article  Google Scholar 

  • McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88(3): 479–504

    Article  Google Scholar 

  • McNaughton KG, Laubach J (2000) Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-Layer Meteorol 96(1–2): 143–185

    Article  Google Scholar 

  • Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationships over a boreal forest—roughness sublayer corrections. Agric For Meteorol 98(9):645–658

    Article  Google Scholar 

  • Moene AF, Schüttemeyer D, Hartogensis OK (2006) Scalar similarity functions: the influence of surface heterogeneity and entrainment. In Extended abstract presented on the 17th AMS Symposium on Boundary Layer and Turbulence, San Diego, paper 5.1

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120(1): 163–179

    Article  Google Scholar 

  • Ohtaki E (1985) On the similarity in atmospheric fluctuations of carbon-dioxide, water-vapor and temperature over vegetated fields. Boundary-Layer Meteorol 32(1): 25–37

    Article  Google Scholar 

  • Padro J (1993) An investigation of flux-variance methods and universal functions applied to 3 land-use types in unstable conditions. Boundary-Layer Meteorol 66(4): 413–425

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, p 397

    Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3): 565–587

    Article  Google Scholar 

  • Raupach MR (1979) Anomalies in flux-gradient relationships over forest. Boundary-Layer Meteorol 16: 467

    Article  Google Scholar 

  • Raupach MR, Stewart JB, Thom AS (1979) Analysis of flux-profile relationships above tall vegetation - alternative view—comments. Quart J Roy Meteorol Soc 105(446): 1077–1078

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78(3–4): 351–382

    Article  Google Scholar 

  • Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J Atmos Sci 52(11): 1863–1874

    Article  Google Scholar 

  • Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97: 273–291

    Article  Google Scholar 

  • Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123(1): 77–98

    Article  Google Scholar 

  • Sun J, Burns SP, Delany AC, Oncley SP, Turnipseed AA, Stephens BB, Lenschow DH, LeMone MA,Monson RK, Anderson DE (2007) CO2 transport over complex terrain. Agric Forest Meteorol 145:1–21

    Article  Google Scholar 

  • Thom AS, Stewart JB, Oliver HR, Gash JHC (1975) Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Quart J Roy Meteorol Soc 101: 93–105

    Article  Google Scholar 

  • Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol 11: 783–792

    Article  Google Scholar 

  • Thomas C, Martin JG, Goeckede M, Siqueira MB, Foken T, Law BE, Loescher HW, Katul G (2008) Estimating daytime ecosystem respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agic For Meteorol (In press)

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3): 279–300

    Article  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780): 861–865

    Article  Google Scholar 

  • Weaver HJ (1990) Temperature and humidity flux-variances relations determined by one–dimensional eddy-correlation. Boundary-Layer Meteorol 53: 77–91

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Quart J Roy Meteorol Soc 106(447): 85–100

    Article  Google Scholar 

  • Wesley ML (1988) Use of variance techniques to measure dry air-surface exchange rates. Boundary-Layer Meteorol 44: 13–31

    Article  Google Scholar 

  • Wesson KH, Katul G, Lai CT (2001) Sensible heat flux estimation by flux variance and half-order time derivative methods. Water Resource Res 37(9): 2333–2343

    Article  Google Scholar 

  • Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1): 149–165

    Article  Google Scholar 

  • Wyngaard JC, Cote OR, Izumi Y (1971) Local free convection, similarity, and budgets of shear stress and heat flux. J Atmos Sci 37: 271–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Katul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cava, D., Katul, G.G., Sempreviva, A.M. et al. On the Anomalous Behaviour of Scalar Flux–Variance Similarity Functions Within the Canopy Sub-layer of a Dense Alpine Forest. Boundary-Layer Meteorol 128, 33–57 (2008). https://doi.org/10.1007/s10546-008-9276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9276-z

Keywords

Navigation