Skip to main content
Log in

Local and Global Similarity in Turbulent Transfer of Heat, Water Vapour, And CO 2 in the Dynamic Convective Sublayer Over a Suburban Area

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigated the ‘local’ and ‘global’ similarity of vertical turbulent transfer of heat, water vapour, and CO2 within an urban surface layer. The results were derived from field measurements in a residential area of Tokyo, Japan during midday on fair-weather days in July 2001. In this study, correlation coefficients and quadrant analysis were used for the evaluation of ‘global’ similarity and wavelet analysis was employed for investigating ‘local’ similarity. The correlation coefficients indicated that the transfer efficiencies of water vapour and CO2 were generally smaller than that of heat. Using wavelet analysis, we found that heat is always efficiently transferred by thermal and organized motions. In contrast, water vapour and CO2, which are passive quantities, were not transferred as efficiently as heat. The quadrant analyses showed that the heat transfer by ejection exceeded that by sweep, and the ratios of ejection to sweep for water vapour and CO2 transfer were less than that for heat. This indicated that heat is more efficiently transferred by upward motions and supported the findings from wavelet analysis. The differences of turbulent transfer between heat and both CO2 and water vapour were probably caused both by the active role of temperature and the heterogeneity in the source distribution of scalars

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas E.L., Hill R.J., Gosz J.R., Moore D.I., Otto W.D., Sarma A.D. (1998). ‘Statistics of Surface Layer Turbulence over Terrain with Meter-Scale Heterogeneity’. Boundary-Layer Meteorol. 86:379–408

    Article  Google Scholar 

  • Asanuma J., Brutsaert W. (1999). ‘The Effect of Chessboard Variability of the Surface Fluxes on the Turbulence Fields in a Convective Atmospheric Surface Layer’. Boundary-Layer Meteorol. 91:37–50

    Article  Google Scholar 

  • Baldocchi D., Wilson K. (2001). ‘Modeling CO2 and Water Vapor Exchange of a Temperate Broadleaved Forest across Hourly to Decadal Time Scales’. Ecol. Model. 142:155–184

    Article  Google Scholar 

  • Beljaars A.C.M., Schotanus P., Nieuwstadt F.T.M. (1983). ‘Surface Layer Similarity under Nonuniform Fetch Conditions’. J. Clim. Appl. Meteorol. 22:1800–1810

    Article  Google Scholar 

  • Bergström H., Högström U. (1989). ‘Turbulent Exchange Above a Pine Forest II: Organized Structures’. Boundary-Layer Meteorol. 49:231–263

    Article  Google Scholar 

  • Clark J.F., Ching J.K.S., Godowitch J.M. 1982, An Experimental Study of Turbulence in an Urban Environment, Tech. Report EPA-600/3-82-062, U. S. EPA, Research Triangle Park, NC, p. 150

  • Coppin P.A., Raupach M.R., Legg B.J. (1986). ‘Experiments on Scalar Dispersion within a Model Plant Canopy Part II: An Elevated Plane Source’. Boundary-Layer Meteorol. 35:167–191

    Article  Google Scholar 

  • De Bruin H.A.R., Kohsiek W., Van den Hurk B.J.J.M. (1993). ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapor, Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’. Boundary-Layer Meteorol. 63:231–257

    Article  Google Scholar 

  • De Bruin H.A.R., Van Den Hurk B.J.J.M., Kroon L.J.M. (1999). ‘On the Temperature-Humidity Correlation and Similarity’. Boundary-Layer Meteorol. 93:453–468

    Article  Google Scholar 

  • Finnigan J.J. (1979). ‘Turbulence in Waving Wheat. I. Mean Statistics and Honami’. Boundary-Layer Meteorol. 16:181–211

    Article  Google Scholar 

  • Gao W., Li B.L. (1993). ‘Wavelet Analysis of Coherent Structures at the Atmosphere-forest Interface’. J. Appl. Meteorol. 32:1717–1725

    Article  Google Scholar 

  • Grimmond C.S.B., King T.S., Cropley F.D., Nowak D.J., Souch C. (2002). ‘Local-scale Fluxes of Carbon dioxide in Urban Environments: Methodological Challenges and Results from Chicago’. Environ. Poll. 116:S243–S254

    Article  Google Scholar 

  • Kaimal J.C., Finnigan J.J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, NY, p. 289

    Google Scholar 

  • Kanda M. (2005), ‘Large Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulent Organized Structures’. Boundary-Layer Meteorol. In press

  • Katul G., Goltz S.M., Hsieh C.-I., Cheng Y., Mowry F., Sigmon J. (1995). ‘Estimation of Surface Heat and Momentum Fluxes Using the Flux-Variance Method above Uniform and No-Uniform Terrain’. Boundary-Layer Meteorol. 74:237–260

    Article  Google Scholar 

  • Katul G., Vidakovic B. (1996). ‘The Partitioning of Attached and Detached Eddy Motion in the Atmospheric Surface Layer Using Lorentz Wavelet Filtering’. Boundary-Layer Meteorol. 77:153–172

    Article  Google Scholar 

  • Katul G., Kuhn G., Schieldge J., Hsieh C.-I. (1997a). ‘The Ejection-Sweep Character of Scalar Fluxes in the Unstable Surface Layer’. Boundary-Layer Meteorol. 83:1–26

    Article  Google Scholar 

  • Katul G., Hsieh C.-I., Kuhn G., Ellsowrth D. (1997b). ‘Turbulent Eddy Motion at Forest-atmosphere Interface’. J. Geophys. Res. 102:13409–13421

    Article  Google Scholar 

  • Katul G., Hsieh C.-I. (1999). ‘A Note on the Flux-variance Similarity Relationships for Heat and Water Vapour in the Unstable Atmospheric Surface Layer’. Boundary-Layer Meteorol. 90:327–338

    Article  Google Scholar 

  • Mahrt L. (1991). ‘Boundary-Layer Moisture Regimes’. Quart. J. Roy. Meteorol. Soc. 117:151–176

    Article  Google Scholar 

  • Mahrt L. (2000). ‘Surface Heterogeneity and Vertical Structure of the Boundary Layer’. Boundary-Layer Meteorol. 96:33–62

    Article  Google Scholar 

  • Maitani T., Ohtaki E. (1987). ‘Turbulent Transport Processes of Momentum and Sensible Heat in the Surface Layer over a Paddy Field’. Boundary-Layer Meteorol. 40:283–293

    Article  Google Scholar 

  • Maitani T., Shaw R.H. (1990). ‘Joint Probability Analysis of Momentum and Heat Fluxes at a Deciduous Forest’. Boundary-Layer Meteorol. 52:283–300

    Article  Google Scholar 

  • McMillen R.T. (1988). ‘An Eddy Correlation Technique with Extended Applicability to Non-simple Terrain’. Boundary-Layer Meteorol. 43:231–245

    Article  Google Scholar 

  • Moriwaki R., Kanda M. (2004). ‘Seasonal and Diurnal Fluxes of Radiation, Heat, Water Vapor and CO2 over a Suburban Area’. J. Appl. Meteorol. 43:1700–1710

    Article  Google Scholar 

  • Moriwaki R., Kanda M. 2005, ‘Flux-gradient Profiles for Momentum and Heat over an Urban Surface’. Theor. Appl. Climatol. doi:10.1007/s00704-005-0150-3

  • Nakagawa H., Nezu I. (1977). ‘Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open-channel Flow’. J. Fluid Mech. 80:99–128

    Article  Google Scholar 

  • Ohtaki E. (1985). ‘On the Similarity in Atmospheric Fluctuation of Carbon dioxide, Water vapor and Temperature over Vegetated Fields’. Boundary-Layer Meteorol. 32:25–37

    Article  Google Scholar 

  • Oikawa S., Meng Y. (1995). ‘Turbulence Characteristics and Organized Motion in a Suburban Roughness Sublayer’. Boundary-Layer Meteorol. 74:289–312

    Article  Google Scholar 

  • Panofsky H.A., Tennekes H., Lenschow D.H., Wyngaard J.C. (1977). ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Unstable Conditions’. Boundary-Layer Meteorol. 11:355–361

    Article  Google Scholar 

  • Petenko I.V. (2001). ‘Advanced Combination of Spectral and Wavelet Analysis (“Spavelet” Analysis)’. Boundary-Layer Meteorol. 100:287–299

    Article  Google Scholar 

  • Raupach M.R. (1981). ‘Conditional Statistics of Reynolds Stress in Rough-wall and Smooth-wall Turbulent Boundary Layers’. J. Fluid Mech. 108:363–382

    Article  Google Scholar 

  • Roth M., Oke T.R. (1995). ‘Relative Efficiencies of Turbulent Transfer of Heat, Mass, and Momentum over a Patchy Urban Surface’. J. Atmos. Sci. 52:1863–1874

    Article  Google Scholar 

  • Scanlon T.M., Albertson J.D. (2001). ‘Turbulent Transport of Carbon dioxide and Water vapor within a Vegetation Canopy during Unstable Conditions: Identification of Episodes Using Wavelet Analysis’. J. Geophys. Res. 106(D7):7251–7262

    Article  Google Scholar 

  • Sempreviva A.M., Høstrup J. (1998). ‘Transport of Temperature and Humidity Variance and Covariance in Coastal Atmospheric Boundary Layers’. Boundary-Layer Meteorol. 87:233–253

    Article  Google Scholar 

  • Shaw R.H., Tavangar J., Ward D. (1983). ‘Structure of the Reynolds Stress in a Canopy Layer’. J. Clim. Appl. Meteorol. 22:1922–1931

    Article  Google Scholar 

  • Stull R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, The Netherlands, 666 pp

    Google Scholar 

  • Tillman J.E. (1972). ‘The Indirect Determination of Stability, Heat and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables during Dry Unstable Conditions’. J. Appl. Meteorol. 11:783–792

    Article  Google Scholar 

  • Trevino G., Andreas E. (1996). ‘On Wavelet Analysis of Nonstationary Turbulence’. Boundary-Layer Meteorol. 81:271–288

    Article  Google Scholar 

  • Watanabe T. (2004). ‘Large-eddy Simulation of Coherent Turbulence Structures Associated with Scalar Ramps over Plant Canopies’. Boundary-Layer Meteorol. 112:307–341

    Article  Google Scholar 

  • Weaver H.J. (1990). ‘Temperature and Humidity Flux-variance Relations Determined by One-Dimensional Eddy Correlation’. Boundary-Layer Meteorol. 53:77–91

    Article  Google Scholar 

  • Webb E.K., Pearman G.I., Leuning R. (1980). ‘Correction of Flux Measurements for Density Effects Due to Heat and Water vapour Transfer’. Quart. J. Roy. Meteorol. Soc. 106:85–100

    Article  Google Scholar 

  • Wesely M.L. (1988). ‘Use of Variance Techniques to Measure Dry Air-Surface Exchange Rates’. Boundary-Layer Meteorol. 44:13–31

    Article  Google Scholar 

  • Wyngaard J.C., Coté O.R., Izumi Y. (1971). ‘Local Free Convection, Similarity and the Budgets of Shear Stress and Heat Flux’. J. Atmos. Sci. 37:271–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Moriwaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriwaki, R., Kanda, M. Local and Global Similarity in Turbulent Transfer of Heat, Water Vapour, And CO 2 in the Dynamic Convective Sublayer Over a Suburban Area. Boundary-Layer Meteorol 120, 163–179 (2006). https://doi.org/10.1007/s10546-005-9034-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9034-4

Keywords

Navigation