Skip to main content
Log in

Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This paper argues that the active turbulence and coherent motions near the top of a vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around the inflectional mean velocity profile which develops between two coflowing streams of different velocities, differs in several ways from turbulence in a surface layer. Through these differences, the mixing-layer analogy provides an explanation for many of the observed distinctive features of canopy turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio K H/K M of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these length scales are controlled by the shear length scale % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa% aaleaacaWGtbaabeaakiabg2da9iaadwfacaGGOaGaamiAaiaacMca% caGGVaGabmyvayaafaGaaiikaiaadIgacaGGPaaaaa!3FD0!\[L_S = U(h)/U'(h)\] (where h is canopy height, U(z) is mean velocity as a function of height z, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa% Gaeyypa0JaaeizaiaadwfacaGGVaGaaeizaiaadQhaaaa!3C32!\[U' = {\rm{d}}U/{\rm{d}}z\]). In particular, the streamwise spacing of the dominant canopy eddies is λx = mL s, with m = 8.1. These predictions are tested against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence, which is quasi-horizontal on the scale of the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro, B. D.: 1990a, ‘Comparison of Turbulence Statistics Within Three Boreal Forest Canopies’, Boundary-Layer Meteorol. 51, 99–121.

    Google Scholar 

  • Amiro, B. D.: 1990b, ‘Drag Coefficients and Turbulence Spectra Within Three Boreal Forest Canopies’, Boundary-Layer Meteorol. 52, 227–246.

    Google Scholar 

  • Antonia, R. A.: 1981, ‘Conditional Sampling in Turbulence Measurement’, Ann. Rev. Fluid Mech. 13, 131–156.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’, J. Atmos. Sci. 36, 99–108.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988a, ‘Turbulence Structure in a Deciduous Forest’, Boundary-Layer Meteorol. 43, 345–364.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988b, ‘A Spectral and Lag-correlation Analysis of Turbulence in a Deciduous Forest Canopy’, Boundary-Layer Meteorol. 45, 31–58.

    Google Scholar 

  • Bell, J. H. and Mehta, R. D.: 1990, ‘Development of a Two-stream Mixing Layer from Tripped and Untripped Boundary Layers’, AIAA J. 28, 2034–2038.

    Google Scholar 

  • Bergström, H. and Högström, U.: 1989, ‘Turbulent Exchange Above a Pine Forest II. Organized Structures’, Boundary-Layer Meteorol. 49, 231–263.

    Google Scholar 

  • Betchov, R. and Criminale, W. O.: 1967, Stability of Parallel Flows, Academic Press, New York, 330 pp.

    Google Scholar 

  • Bisset, D. K., Antonia, R. A., and Raupach, M. R.: 1991, ‘Topology and Transport Properties of Large-scale Organized Motion in a Slightly Heated Rough Wall Boundary Layer’, Phys. Fluids A 3, 2220–2228.

    Google Scholar 

  • Blackwelder, R. F. and Kaplan, R. E.: 1976, ‘On the Wall Structure of the Turbulent Boundary Layer’, J. Fluid Mech. 76, 89–112.

    Google Scholar 

  • Bradshaw, P.: 1967, ‘Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers’, J. Fluid Mech. 30, 241–258.

    Google Scholar 

  • Browand, F. K. and Troutt, T. R.: 1980, ‘A Note on Spanwise Structure in the Two-dimensional Mixing Layer’, J. Fluid Mech. 97, 771–781.

    Google Scholar 

  • Brown, G. L. and Roshko, A.: 1974, ‘On Density Effects and Large Structure in Turbulent Mixing Layers’, J. Fluid Mech. 64, 775–816.

    Google Scholar 

  • Brunei, Y. and Collineau, S.: 1994, ‘Wavelet Analysis of Diurnal and Nocturnal Turbulence Above a Maize Crop’, in E. Foufoula-Georgiou and P. Kumar (eds.), Wavelets in Geophysics, Academic Press, New York, pp. 129–150.

    Google Scholar 

  • Brunei, Y., Finnigan, J. J., and Raupach, M. R.: 1994, ‘A Wind Tunnel Study of Air Flow in Waving Wheat: Single-point Velocity Statistics’, Boundary-Layer Meteorol. 70, 95–132.

    Google Scholar 

  • Cellier, P.: 1986, ‘On the Validity of Flux-gradient Relationships Above Very Rough Surfaces’, Boundary-Layer Meteorol. 36, 417–419.

    Google Scholar 

  • Cellier, P. and Brunet, Y: 1992, ‘Flux-gradient Relalionships Above Tall Forest Canopies’, Agric. For. Meteorol. 58, 93–117.

    Google Scholar 

  • Chen, C. P. and Blackwelder, R. F.: 1978, ‘Large-scale Motion in a Turbulent Boundary Layer: A Study Using Temperature Contamination’, J. Fluid Mech. 89, 1–31.

    Google Scholar 

  • Chen, F. and Schwerdtfeger, P.: 1989, ‘Flux-gradient Relationships for Momentum and Heat Over a Rough Natural Surface’, Quart. J. Roy. Meteorol. Soc. 115, 335–352.

    Google Scholar 

  • Collineau, S. and Brunei, Y.: 1993a, ‘Detection of Turbulent Coherent Motions in a Forest Canopy, Part I: Wavelet Analysis’, Boundary-Layer Meteorol. 65, 357–379.

    Google Scholar 

  • Collineau, S. and Brunet, Y.: 1993b, ‘Detection of Turbulent Coherent Motions in a Forest Canopy, Part II: Timescales and Conditional Averages’, Boundary-Layer Meteorol. 66, 49–73.

    Google Scholar 

  • Comte, P., Lesieur, M., and Lamballais, E.: 1992, ‘Large- and Small-scale Stirring of Vorticity and a Passive Scalar in a 3-D Temporal Mixing Layer’, Phys. Fluids A 4, 2761–2778.

    Google Scholar 

  • Coppin, P. A., Raupach, M. R., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion Within a Model Plant Canopy, Part II. An Elevated Plane Source’, Boundary-Layer Meteorol. 35, 167–191.

    Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1985, ‘Flux-gradient Relationships in a Forest Canopy’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Co. Dordrecht, The Netherlands, pp. 421–442.

    Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1987, ‘On scalar transport in plant canopies’, Irrig. Sci. 8, 131–149.

    Google Scholar 

  • Dimotakis, P. E. and Brown, G. L.: 1976, ‘The Mixing Layer at High Reynolds Number: Largestructure Dynamics and Entrainment’, J. Fluid Mech. 78, 535–560.

    Google Scholar 

  • Drazin, P. G. and Reid, W. H.: 1981, Hydrodynamic Stability, Cambridge University Press, Cambridge, 527 pp.

    Google Scholar 

  • Fiedler, H. E.: 1974, ‘Transport of Heat across a Plane Turbulent Mixing Layer’, Adv. Geophys. 18A, 93–109.

    Google Scholar 

  • Finnigan, J. J.: 1979a, ‘Turbulence in Waving Wheat. I. Mean Statistics and Honami’, Boundary-Layer Meteorol. 16, 181–211.

    Google Scholar 

  • Finnigan, J. J.: 1979b, ‘Turbulence in Waving Wheat. II. Structure of Momentum Transfer’, Boundary-Layer Meteorol. 16, 213–236.

    Google Scholar 

  • Finnigan, J. J. and Brunet, Y.: 1995, ‘Turbulent Airflow in Forests on Flat and Hilly Terrain’, Proc. IUFRO Conf. on Wind and Wind-related Damage to Forests, Edinburgh, 1993. In Wind and Trees (Eds M. P. Coutts and J. Grace), Cambridge University Press, Cambridge, pp. 3–40.

    Google Scholar 

  • Finnigan, J. J., and Raupach, M. R.: 1987, ‘Transfer Processes in Plant Canopies in Relation to Stomatal Characteristics’, in E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), Stomatal Function, Stanford University Press, Stanford, CA, pp. 385–429.

    Google Scholar 

  • Fitzjarrald, D. R. and Moore, K. E.: 1990, ‘Mechanisms of Nocturnal Exchange Between the Rain Forest and the Atmosphere’, J. Geophys. Res. 95, 16839–16850.

    Google Scholar 

  • Fitzjarrald, D. R., Moore, K. E., Cabral, O. M. R., Scolar, J., Manzi, A. O., and De Abreu Sà, L. D.: 1990, ‘Daytime Turbulent Exchange Between the Amazon Forest and the Atmosphere’, J. Geophys. Res. 95, 16825–16838.

    Google Scholar 

  • Gao, W., Shaw, R. H., and Paw, U. K. T.: 1989, ‘Observation of Organized Structure in Turbulent Flow Within and Above a Forest Canopy’, Boundary-Layer Meteorol. 47, 349–377.

    Google Scholar 

  • Gardiner, B. A.: 1994, ‘Wind and Wind Forces in a Plantation Spruce Forest’, Boundary-Layer Meteorol. 67, 161–186.

    Google Scholar 

  • Garratt, J. R.: 1978, ‘Flux Profile Relations Above Tall Vegetation’, Quart. J. Roy. Meteorol. Soc. 104, 199–212.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Grant, H. L.: 1958, ‘The Large Eddies of Turbulent Motion’, J. Fluid Mech. 4, 149–190.

    Google Scholar 

  • Ho, C., and Huerre, P.: 1984, ‘Perturbed Free Shear Layers’, Ann. Rev. Fluid Mech. 16, 365–424.

    Google Scholar 

  • Hunt, J. C. R. and Carruthers, D. J.: 1990, ‘Rapid Distortion Theory and the ‘Problems’ of Turbulence’, J. Fluid Mech. 212, 497–532.

    Google Scholar 

  • Inoue, E.: 1955, ‘Studies of the Phenomena of Waving Plants (“Honami”) Caused by Wind. Part I. Mechanism and Characteristics of Waving Plants Phenomena’, J. Agric. Met. Japan 11, 18–22.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, New York, Oxford, 289 pp.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surfacelayer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Den Hartog, G., and Neumann, H. H.: 1990, ‘The Influence of Atmospheric Stability on the Budgets of the Reynolds Stress and Turbulent Kinetic Energy Within and Above a Deciduous Forest’, J. Appl. Meteorol. 29, 916–933.

    Google Scholar 

  • Lu, C. H. and Fitzjarrald, D. R.: 1994, ‘Seasonal and Diurnal Variations of Coherent Structures Over a Deciduous Forest’, Boundary-Layer Meteorol. 69, 43–69.

    Google Scholar 

  • Lu, S. S. and Willmarth, W. W.: 1973, ‘Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer’, J. Fluid Mech. 60, 481–571.

    Google Scholar 

  • Maitani, T. and Seo, T.: 1985, ‘Estimates of Velocity-pressure and Velocity-pressure-gradient Interactions in the Surface Layer Over Plant Canopies’, Boundary-Layer Meteorol. 33, 51–60.

    Google Scholar 

  • Maxey, M. R.: 1982, ‘Distortion of Turbulence in Flows with Parallel Streamlines’, J. Fluid Mech. 124, 261–282.

    Google Scholar 

  • Meyers, T. P. and Baldocchi, D. D.: 1991, ‘The Budgets of Turbulent Kinetic Energy and Reynolds Stress Within and Above a Deciduous Forest’, Agric. For. Meteorol. 53, 207–222.

    Google Scholar 

  • Michalke, A.: 1964, ‘On the Inviscid Instability of the Hyperbolic-tangent Velocity Profile’, J. Fluid Mech. 19, 543–556.

    Google Scholar 

  • Michalke, A.: 1965, ‘On Spatially Growing Disturbances in an Inviscid Shear Layer’, J. Fluid Mech. 23, 521–544.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, M.I.T. Press, Cambridge, 769 pp.

    Google Scholar 

  • Moore, D. W., and Saffman, P. G.: 1975, ‘The Density of Organized Vortices in a Turbulent Mixing Layer’, J. Fluid Mech. 69, 465–473.

    Google Scholar 

  • Nakagawa, H. and Nezu, I.: 1977, ‘Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open-channel Flows’, J. Fluid Mech. 80, 99–128.

    Google Scholar 

  • Paw U, K. T., Brunei, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, ‘On Coherent Structures in Turbulence Above and Within Agricultural Plant Canopies’, Agric. For. Meteorol. 61, 55–68. (Corrigendum: Agric. For. Meteorol. 63, 127.)

    Google Scholar 

  • Perry, A. E., Henbest, S., and Chong, M. S.: 1986, ‘A Theoretical and Experimental Study of Wall Turbulence’, J. Fluid Mech. 165, 163–199.

    Google Scholar 

  • Pierrehumbert, R. T. and Widnall, S. E.: 1982, ‘The Two- and Three-dimensional Instabilities of a Spatially Periodic Shear Layer’, J. Fluid Mech. 112, 467–474.

    Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, University of Chicago Press, Chicago, 130 pp.

    Google Scholar 

  • Qiu, J., Paw U, K. T., and Shaw, R. H.: 1995, ‘Pseudo-wavelet Analysis of Turbulence Patterns in Three Vegetation Layers’, Boundary-Layer Meteorol. 72, 177–204.

    Google Scholar 

  • Raupach, M. R.: 1979, ‘Anomalies in Flux-gradient Relationships Over Forest’, Boundary-Layer Meteorol. 16, 467–486.

    Google Scholar 

  • Raupach, M. R.: 1981, ‘Conditional Statistics of Reynolds Stress in Rough-wall and Smooth-wall Turbulent Boundary Layers’, J. Fluid Mech. 108, 363–382.

    Google Scholar 

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer, Berlin, pp. 95–127.

    Google Scholar 

  • Raupach, M. R.: 1989, ‘A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies’, Quart. J. Roy. Meteorol. Soc. 115, 609–632.

    Google Scholar 

  • Raupach, M.R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-wall Turbulent Boundary Layers’, Appl. Mechs. Revs. 44, 1–25.

    Google Scholar 

  • Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion Within a Plant Canopy, Part I: The Turbulence Structure’, Boundary-Layer Meteorol. 35, 21–52.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, ‘Coherent Eddies in Vegetation Canopies’, Proc. Fourth Australasian Conf. on Heat and Mass Transfer, Christchurch, New Zealand, 9–12 May 1989.

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and Above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.

    Google Scholar 

  • Rogers, M. M. and Moser, R. D.: 1994, ‘Direct Simulation of a Self-similar Turbulent Mixing Layer’, Phys. Fluids A 6, 903–922.

    Google Scholar 

  • Savill, A. M.: 1987, ‘Recent Developments in Rapid-distortion Theory’, Ann. Rev. Fluid Mech. 19, 531–575.

    Google Scholar 

  • Seginer, I., Mulhearn, P. J., Bradley, E. F., and Finnigan, J. J.: 1976, ‘Turbulent Flow in a Model Plant Canopy’, Boundary-Layer Meteorol. 10, 423–453.

    Google Scholar 

  • Shaw, R. H., Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1995, ‘A Wind Tunnel Study of Air Flow in Waving Wheat: Two-point Velocity Statistics’, Boundary-Layer Meteorol. 76, 349–376.

    Google Scholar 

  • Shaw, R. H., Den Hartog, G., and Neumann, H. H.: 1988, ‘Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulent Intensity in a Deciduous Forest’, Boundary-Layer Meteorol. 45, 391–409.

    Google Scholar 

  • Shaw, R. H., Paw U, K. T., and Gao, W.: 1989, ‘Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site’, Agric. For. Meteorol. 47, 123–138.

    Google Scholar 

  • Shaw, R. H., Silversides, R. H., and Thurtell, G. W.: 1974, ‘Some Observations of Turbulence and Turbulent Transport Within and Above Plant Canopies’, Boundary-Layer Meteorol. 5, 429–449.

    Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D. P.: 1983, ‘Structure of the Reynolds Stress in a Canopy Layer’, J. Climate Appl. Meteorol. 22, 1922–1931.

    Google Scholar 

  • Shuttleworth, W. J.: 1989, ‘Micrometeorology of Temperate and Tropical Forest’, Phil. Trans. Roy. Soc. Lond. B 324, 299–334.

    Google Scholar 

  • Taylor, R. J.: 1958, ‘Thermal Structures in the Lowest Layers of the Atmosphere’, Aust. J. Phys. 11, 168–176.

    Google Scholar 

  • Townsend, A. A.: 1970, ‘Entrainment and the Structure of Turbulent Flow’, J. Fluid Mech. 41, 13–46.

    Google Scholar 

  • Townsend, A. A.: 1976, ‘The Structure of Turbulent Shear Flow’, Cambridge University Press, Cambridge, 429 pp.

    Google Scholar 

  • Wallace, J. M., Eckelmann, H., and Brodkey, R. S.: 1972, ‘The Wall Region in Turbulent Flow’, J. Fluid Mech. 54, 39–48.

    Google Scholar 

  • Wilczak, J. M.: 1984, ‘Large-scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part I: Velocity and Temperature Structure’, J. Atmos. Sci. 41, 3537–3550.

    Google Scholar 

  • Wilson, J.D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, ‘Statistics of Atmospheric Turbulence Within and Above a Corn Canopy’, Boundary-Layer Meteorol. 24, 495–519.

    Google Scholar 

  • Wilson, N. R., and Shaw, R. H.: 1977, ‘A Higher-order Closure Model For Canopy Flow’, J. Appl. Meteorol. 16, 1198–1205.

    Google Scholar 

  • Winant, C. D. and Browand, F. K.: 1974, ‘Vortex Pairing: the Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Numbers’, J. Fluid Mech. 63, 237–255.

    Google Scholar 

  • Wygnanski, I. and Fiedler, H. E.: 1970, ‘The Two-dimensional Mixing Region', J. Fluid Mech. 41, 327–361.

    Google Scholar 

  • Wyngaard, J. C.: 1988, ‘Convective Processes in the Lower Atmosphere’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer, Berlin, pp. 240–260.

    Google Scholar 

  • Zhang, C., Shaw, R. H., and Paw, U. K. T.: 1992, ‘Spatial Characteristics of Turbulent Coherent Structures Within and Above an Orchard Canopy’, in S. E. Schwartz and W. G. N. Slinn (eds.), Precipitation Scavenging and Atmosphere-Surface Exchange, Hemisphere Publishing Co. Washington, pp. 741–751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raupach, M.R., Finnigan, J.J. & Brunei, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorol 78, 351–382 (1996). https://doi.org/10.1007/BF00120941

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120941

Keywords

Navigation